Subscribe to RSS
DOI: 10.1055/s-0030-1253449
Endothelial Heterogeneity Associated with Regional Athero-Susceptibility and Adaptation to Disturbed Blood Flow in Vivo
Publication History
Publication Date:
08 June 2010 (online)
ABSTRACT
Endothelial phenotypic heterogeneity plays an important role in the susceptibility of the cardiovascular system to disease. Arteries and heart valves are susceptible to chronic inflammatory disease in regions of blood flow disturbance that implicates hemodynamic forces and transport characteristics as prominent influences on endothelial phenotype. By combining in vivo high-throughput genomics (discovery science) and in vitro mechanistic approaches (reductionist science), we present endothelial patho-susceptibility as an imbalance of multiple interrelated pathways that sensitize the cells to pathological change. The recently identified association of endoplasmic reticulum stress with endothelium in regions of flow disturbance is outlined as an important example of susceptible phenotype linked to proinflammatory and oxidative stress pathways.
KEYWORDS
Endothelium - hemodynamics - athero-susceptibility - gene expression - shear stress
REFERENCES
- 1 Gerszten R E, Wang T J. The search for new cardiovascular biomarkers. Nature. 2008; 451(7181) 949-952
- 2 Virmani R, Kolodgie F D, Burke A P, Farb A, Schwartz S M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000; 20(5) 1262-1275
- 3 Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med. 2002; 8(11) 1211-1217
- 4 Hansson G K, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006; 6(7) 508-519
- 5 Lusis A J, Fogelman A M, Fonarow G C. Genetic basis of atherosclerosis: part II: clinical implications. Circulation. 2004; 110(14) 2066-2071
- 6 Davies P F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995; 75(3) 519-560
- 7 Davies P F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009; 6(1) 16-26
- 8 Passerini A G, Polacek D C, Shi C et al.. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A. 2004; 101(8) 2482-2487
- 9 Hajra L, Evans A I, Chen M, Hyduk S J, Collins T, Cybulsky M I. The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci U S A. 2000; 97(16) 9052-9057
- 10 Gimbrone Jr M A, Anderson K R, Topper J N et al.. Special communication: the critical role of mechanical forces in blood vessel development, physiology and pathology. J Vasc Surg. 1999; 29(6) 1104-1151
- 11 Davies P F, Polacek D C, Handen J S, Helmke B P, DePaola N. A spatial approach to transcriptional profiling: mechanotransduction and the focal origin of atherosclerosis. Trends Biotechnol. 1999; 17(9) 347-351
- 12 Topper J N, Cai J, Qiu Y et al.. Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci U S A. 1997; 94(17) 9314-9319
- 13 Nagel T, Resnick N, Atkinson W J, Dewey Jr C F, Gimbrone Jr M A. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest. 1994; 94(2) 885-891
- 14 Chen B P, Li Y S, Zhao Y et al.. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics. 2001; 7(1) 55-63
- 15 DePaola N, Davies P F, Pritchard W F et al.. Spatial regulation of gap junction connexin 43 in endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci U S A. 1999; 96 3154-3159
- 16 Garcia-Cardeña G, Comander J, Anderson K R, Blackman B R, Gimbrone Jr M A. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A. 2001; 98(8) 4478-4485
- 17 Wasserman S M, Mehraban F, Komuves L G et al.. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol Genomics. 2002; 12(1) 13-23
- 18 Dekker R J, van Soest S, Fontijn R D et al.. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2). Blood. 2002; 100(5) 1689-1698
- 19 Magid R, Davies P F. Endothelial protein kinase C isoform identity and differential activity of PKCzeta in an athero-susceptible region of porcine aorta. Circ Res. 2005; 97(5) 443-449
- 20 de Nigris F, Lerman L O, Ignarro S W et al.. Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci U S A. 2003; 100(3) 1420-1425
- 21 Simmons C A, Grant G R, Manduchi E, Davies P F. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 2005; 96(7) 792-799
- 22 Passerini A G, Shi C, Francesco N M et al.. Regional determinants of arterial endothelial phenotype dominate the impact of gender or short-term exposure to a high-fat diet. Biochem Biophys Res Commun. 2005; 332(1) 142-148
-
23 Davies P F.
Hemodynamics in the determination of the endothelial phenotype and flow mechanotransduction . In: Aird WC Endothelial Biomedicine; A Comprehensive Treatise. Cambridge, United Kingdom; Cambridge University Press 2007: 230-245 - 24 Civelek M, Manduchi E, Riley R J, Stoeckert Jr C J, Davies P F. Chronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis. Circ Res. 2009; 105(5) 453-461
- 25 Guerraty M A, Grant G R, Karanian J W, Chiesa O A, Pritchard W P, Davies P F. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated pathway activation in swine aortic valve endothelium. Arterioscler Thromb Vasc Biol. 2010; 30(2) 225-231
- 26 Civelek M, Grant G R, Irolla C R et al.. Pre-lesional arterial endothelial phemotypes in hypercholesterolemia: universal ABCA1 upregulation contrasts with region-specific gene expression in vivo. Am J Physiol Heart Circ Physiol. 2010; 298(1) H163-170
- 27 Iiyama K, Hajra L, Iiyama M et al.. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res. 1999; 85(2) 199-207
- 28 Feaver R E, Hastings N E, Pryor A, Blackman B R. GRP78 upregulation by atheroprone shear stress via p38-, alpha2beta1-dependent mechanism in endothelial cells. Arterioscler Thromb Vasc Biol. 2008; 28(8) 1534-1541
- 29 Zeng L, Zampetaki A, Margariti A et al.. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc Natl Acad Sci U S A. 2009; 106(20) 8326-8331
- 30 Kaufman R J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999; 13(10) 1211-1233
- 31 Schröder M, Kaufman R J. The mammalian unfolded protein response. Annu Rev Biochem. 2005; 74 739-789
- 32 Rutkowski D T, Kaufman R J. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci. 2007; 32(10) 469-476
- 33 Cullinan S B, Zhang D, Hannink M, Arvisais E, Kaufman R J, Diehl J A. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003; 23(20) 7198-7209
- 34 Schwartz S M, Benditt E P. Clustering of replicating cells in aortic endothelium. Proc Natl Acad Sci U S A. 1976; 73(2) 651-653
- 35 Chen Y L, Jan K M, Lin H S, Chien S. Ultrastructural studies on macromolecular permeability in relation to endothelial cell turnover. Atherosclerosis. 1995; 118(1) 89-104
- 36 Malhotra J D, Kaufman R J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid Redox Signal. 2007; 9(12) 2277-2293
- 37 Tu B P, Weissman J S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004; 164(3) 341-346
- 38 Zhang K, Kaufman R J. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008; 454(7203) 455-462
- 39 Gargalovic P S, Gharavi N M, Clark M J et al.. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol. 2006; 26(11) 2490-2496
- 40 Lan Q, Mercurius K O, Davies P F. Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun. 1994; 201(2) 950-956
- 41 Khachigian L M, Resnick N, Gimbrone Jr M A, Collins T. Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Invest. 1995; 96(2) 1169-1175
- 42 Collins T, Cybulsky M I. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis?. J Clin Invest. 2001; 107(3) 255-264
- 43 Volger O L, Fledderus J O, Kisters N et al.. Distinctive expression of chemokines and transforming growth factor-beta signaling in human arterial endothelium during atherosclerosis. Am J Pathol. 2007; 171(1) 326-337
- 44 Rutkowski D T, Arnold S M, Miller C N et al.. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 2006; 4(11) e374
- 45 Urano F, Wang X, Bertolotti A et al.. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000; 287(5453) 664-666
- 46 Fang Y, Civelek M, Shi C, Manduchi E, Davies P F. MicroRNA 10a suppresses NF-kappa-B pathway that mediates athero-prone endothelial phenotype. Paper presented at: Annual Scientific Meeting of the Biomedical Engineering Society October 8, 2009 Pittsburgh, PA;
Peter F DaviesPh.D.
Institute for Medicine and Engineering, University of Pennsylvania
1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104
Email: pfd@pobox.upenn.edu