ABSTRACT
The blood vessels supplying tumors are strikingly heterogeneous and differ from their normal counterparts with respect to organization, structure, and function. Six distinctly different tumor vessel types have been identified, and much has been learned about the steps and mechanisms by which they form. Four of the six vessel types (mother vessels, capillaries, glomeruloid microvascular proliferations, and vascular malformations) develop from preexisting normal venules and capillaries by angiogenesis. The two remaining vessel types (feeder arteries and draining veins) develop from arterio-venogenesis, a parallel, poorly understood process that involves the remodeling of preexisting arteries and veins. All six of these tumor vessel types can be induced to form sequentially in normal mouse tissues by an adenoviral vector expressing vascular endothelial growth factor. Current antiangiogenic cancer therapies directed at VEGF-A or its receptors have been of only limited benefit to cancer patients, perhaps because they target only the endothelial cells of the tumor blood vessel subset that requires exogenous VEGF-A for maintenance. A goal of future work is to identify therapeutic targets on tumor blood vessel endothelial cells that have lost this requirement.
KEYWORDS
Angiogenesis - arterio-venogenesis - tumors - vascular endothelial growth factor - VEGF-A
REFERENCES
1
Holash J, Maisonpierre P C, Compton D et al..
Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.
Science.
1999;
284(5422)
1994-1998
2
Leenders W P, Küsters B, de Waal R M.
Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis.
Endothelium.
2002;
9(2)
83-87
3
Du R, Lu K V, Petritsch C et al..
HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion.
Cancer Cell.
2008;
13(3)
206-220
4
Folkman J.
Tumor angiogenesis: therapeutic implications.
N Engl J Med.
1971;
285(21)
1182-1186
5 Warren B. The vascular morphology of tumors . In: Peterson H-I Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. Boca Raton, FL; CRC Press 1979: 1-47
6
Stubbs M, McSheehy P M, Griffiths J R, Bashford C L.
Causes and consequences of tumour acidity and implications for treatment.
Mol Med Today.
2000;
6(1)
15-19
7
Semenza G L.
Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology.
Trends Mol Med.
2001;
7(8)
345-350
8
Nagy J A, Feng D, Vasile E et al..
Permeability properties of tumor surrogate blood vessels induced by VEGF-A.
Lab Invest.
2006;
86(8)
767-780
9 Dvorak H. Tumor blood vessels . In: Aird W The Endothelium: A Comprehensive Reference. Cambridge, United Kingdom; Cambridge University Press 2007
10
Dvorak H F.
Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma.
Am J Pathol.
2003;
162(6)
1747-1757
11
Dvorak H F.
Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.
N Engl J Med.
1986;
315(26)
1650-1659
12
Chang H Y, Sneddon J B, Alizadeh A A et al..
Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.
PLoS Biol.
2004;
2(2)
E7
13
Brown L F, Berse B, Jackman R W et al..
Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer.
Hum Pathol.
1995;
26(1)
86-91
14
Guidi A J, Abu-Jawdeh G, Berse B et al..
Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia.
J Natl Cancer Inst.
1995;
87(16)
1237-1245
15
Ellis L M, Rosen L, Gordon M S.
Overview of anti-VEGF therapy and angiogenesis. Part 1: Angiogenesis inhibition in solid tumor malignancies.
Clin Adv Hematol Oncol.
2006;
4(suppl)
1-12
16
Hurwitz H, Fehrenbacher L, Novotny W et al..
Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.
N Engl J Med.
2004;
350(23)
2335-2342
17
Jain R K, Duda D G, Clark J W, Loeffler J S.
Lessons from phase III clinical trials on anti-VEGF therapy for cancer.
Nat Clin Pract Oncol.
2006;
3(1)
24-40
18
Pettersson A, Nagy J A, Brown L F et al..
Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor.
Lab Invest.
2000;
80(1)
99-115
19
Nagy J A, Dvorak H F, Dvorak A M.
VEGF-A and the induction of pathological angiogenesis.
Annu Rev Pathol.
2007;
2
251-275
20
Sundberg C, Nagy J A, Brown L F et al..
Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery.
Am J Pathol.
2001;
158(3)
1145-1160
21
Nagy J A, Vasile E, Feng D et al..
Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis.
J Exp Med.
2002;
196(11)
1497-1506
22
Nagy J A, Vasile E, Feng D et al..
VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations.
Cold Spring Harb Symp Quant Biol.
2002;
67
227-237
23
Dadras S S, Detmar M.
Angiogenesis and lymphangiogenesis of skin cancers.
Hematol Oncol Clin North Am.
2004;
18(5)
1059-1070, viii
24
He Y, Karpanen T, Alitalo K.
Role of lymphangiogenic factors in tumor metastasis.
Biochim Biophys Acta.
2004;
1654(1)
3-12
25
Jain R K.
Angiogenesis and lymphangiogenesis in tumors: insights from intravital microscopy.
Cold Spring Harb Symp Quant Biol.
2002;
67
239-248
26
Wirzenius M, Tammela T, Uutela M et al..
Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting.
J Exp Med.
2007;
204(6)
1431-1440
27
Nagy J A, Chang S H, Dvorak A M, Dvorak H F.
Why are tumour blood vessels abnormal and why is it important to know?.
Br J Cancer.
2009;
100(6)
865-869
28
Paku S, Paweletz N.
First steps of tumor-related angiogenesis.
Lab Invest.
1991;
65(3)
334-346
29
Brown L F, Yeo K T, Berse B et al..
Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing.
J Exp Med.
1992;
176(5)
1375-1379
30
Ren G, Michael L H, Entman M L, Frangogiannis N G.
Morphological characteristics of the microvasculature in healing myocardial infarcts.
J Histochem Cytochem.
2002;
50(1)
71-79
31
Secomb T W, Konerding M A, West C A, Su M, Young A J, Mentzer S J.
Microangiectasias: structural regulators of lymphocyte transmigration.
Proc Natl Acad Sci U S A.
2003;
100(12)
7231-7234
32
Denekamp J, Hobson B.
Endothelial-cell proliferation in experimental tumours.
Br J Cancer.
1982;
46(5)
711-720
33
Swayne G T, Smaje L H, Bergel D H.
Distensibility of single capillaries and venules in the rat and frog mesentery.
Int J Microcirc Clin Exp.
1989;
8(1)
25-42
34
Chang S H, Kanasaki K, Gocheva V et al..
VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation.
Cancer Res.
2009;
69(10)
4537-4544
35
Cox J L.
Cystatins and cancer.
Front Biosci.
2009;
14
463-474
36
Dvorak A M, Kohn S, Morgan E S, Fox P, Nagy J A, Dvorak H F.
The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation.
J Leukoc Biol.
1996;
59(1)
100-115
37
Feng D, Nagy J A, Hipp J, Dvorak H F, Dvorak A M.
Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin.
J Exp Med.
1996;
183(5)
1981-1986
38
Feng D, Nagy J A, Hipp J, Pyne K, Dvorak H F, Dvorak A M.
Reinterpretation of endothelial cell gaps induced by vasoactive mediators in guinea-pig, mouse and rat: many are transcellular pores.
J Physiol.
1997;
504(Pt 3)
747-761
39
Feng D, Nagy J A, Dvorak A M, Dvorak H F.
Different pathways of macromolecule extravasation from hyperpermeable tumor vessels.
Microvasc Res.
2000;
59(1)
24-37
40
Nagy J A, Morgan E S, Herzberg K T, Manseau E J, Dvorak A M, Dvorak H F.
Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining.
Cancer Res.
1995;
55(2)
376-385
41
Egginton S, Zhou A L, Brown M D, Hudlická O.
Unorthodox angiogenesis in skeletal muscle.
Cardiovasc Res.
2001;
49(3)
634-646
42
Goffin J R, Straume O, Chappuis P O et al..
Glomeruloid microvascular proliferation is associated with p53 expression, germline BRCA1 mutations and an adverse outcome following breast cancer.
Br J Cancer.
2003;
89(6)
1031-1034
43
Straume O, Chappuis P O, Salvesen H B et al..
Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers.
Cancer Res.
2002;
62(23)
6808-6811
44 McKee P. Pathology of the Skin with Clinical Correlations. London, United Kingdom; Mosby International 1996
45
Nagy J A, Dvorak A M, Dvorak H F.
VEGF-A(164/165) and PlGF: roles in angiogenesis and arteriogenesis.
Trends Cardiovasc Med.
2003;
13(5)
169-175
46 Fu Y, Nagy J, Dvorak A, Dvorak H. Tumor blood vessels: structure and function . In: Teicher B, Ellis L Cancer Drug Discovery and Development. Antiangiogenic Agents in Cancer Therapy. Totowa, NJ; Humana Press 2007: 205-224
47
Baker J L.
Retinal capillary hemangioma.
J Am Optom Assoc.
1991;
62(10)
776-779
48
Farah M E, Uno F, Höfling-Lima A L, Morales P H, Costa R A, Cardillo J A.
Transretinal feeder vessel ligature in von Hippel-Lindau disease.
Eur J Ophthalmol.
2001;
11(4)
386-388
49
Goel A, Muzumdar D, Desai K, Chagla A.
Retroorbital hemangiopericytoma and cavernous sinus schwannoma—case report.
Neurol Med Chir (Tokyo).
2003;
43(1)
47-50
50
Folberg R, Hendrix M J, Maniotis A J.
Vasculogenic mimicry and tumor angiogenesis.
Am J Pathol.
2000;
156(2)
361-381
51
Hess A R, Seftor E A, Gruman L M, Kinch M S, Seftor R E, Hendrix M J.
VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry.
Cancer Biol Ther.
2006;
5(2)
228-233
52
Lin A Y, Ai Z, Lee S C et al..
Comparing vasculogenic mimicry with endothelial cell-lined vessels: techniques for 3D reconstruction and quantitative analysis of tissue components from archival paraffin blocks.
Appl Immunohistochem Mol Morphol.
2007;
15(1)
113-119
53
McDonald D M, Munn L, Jain R K.
Vasculogenic mimicry: how convincing, how novel, and how significant?.
Am J Pathol.
2000;
156(2)
383-388
54
Ferrara N.
Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications.
Semin Oncol.
2002;
29(6, suppl 16)
10-14
55
Kim K J, Li B, Winer J et al..
Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.
Nature.
1993;
362(6423)
841-844
56
Jain R K.
Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.
Science.
2005;
307(5706)
58-62
57
Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D.
Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors.
J Clin Invest.
2003;
111(9)
1287-1295
58
Xue Q, Nagy J A, Manseau E J, Phung T L, Dvorak H F, Benjamin L E.
Rapamycin inhibition of the Akt/mTOR pathway blocks select stages of VEGF-A164-driven angiogenesis, in part by blocking S6Kinase.
Arterioscler Thromb Vasc Biol.
2009;
29(8)
1172-1178
59
Seaman S, Stevens J, Yang M Y, Logsdon D, Graff-Cherry C, St Croix B.
Genes that distinguish physiological and pathological angiogenesis.
Cancer Cell.
2007;
11(6)
539-554
60
Shih S C, Zukauskas A, Li D et al..
The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis.
Cancer Res.
2009;
69(8)
3272-3277
Harold F DvorakM.D.
Department of Pathology, Beth Israel Deaconess Medical Center
330 Brookline Avenue, RN227c, Boston, MA 02215
eMail: hdvorak@bidmc.harvard.edu