Am J Perinatol 2010; 27(9): 743-748
DOI: 10.1055/s-0030-1253558
© Thieme Medical Publishers

Treatment with Neuropeptides Attenuates c-fos Expression in a Mouse Model of Fetal Alcohol Syndrome

Maddalena Incerti1 , 2 , Joy Vink1 , 3 , Robin Roberson1 , Daniel Abebe1 , Catherine Y. Spong1
  • 1Unit on Perinatal and Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, Maryland
  • 2University of Milano-Bicocca, Department of Obstetrics and Gynecology, Monza, Italy
  • 3Columbia University Medical Center, Division of Maternal Fetal Medicine, New York, New York
Further Information

Publication History

Publication Date:
04 May 2010 (online)

ABSTRACT

Fetal alcohol syndrome (FAS) is the most common nongenetic cause of mental retardation and is characterized by neurodevelopmental anomalies. C-fos is a cellular marker of transcriptional activity in the stress-signal pathway. Previously, we showed the treatment with NAP (NAPVSIPQ) + SAL (SALLRSIPA) reversed the learning deficit after prenatal alcohol exposure in FAS. Our objective was to evaluate if the mechanism of actions of NAP + SAL involves the stress-signal pathway differentiating c-fos expression in mouse brains after prenatal alcohol exposure. C57Bl6/J mice were treated with alcohol (0.03 mL/g) or placebo on gestational day 8. On postnatal day 40, in utero alcohol-exposed males were treated via gavage with 40 μg D-NAP and 40 μg D-SAL (n = 6) or placebo (n = 4); controls were gavaged with placebo daily (n = 12). After learning evaluation, hippocampus, cerebellum, and cortex were isolated. Calibrator-normalized relative real-time polymerase chain reaction and Western blot analysis were performed. Statistics included analysis of variance and post hoc Fisher analysis. Adult treatment with NAP + SAL restored the down-regulation of c-fos in the hippocampus after prenatal alcohol exposure (p < 0.05), but not in the cerebellum. There was no difference in c-fos expression in the cortex. Adult treatment with NAP + SAL restored the down-regulation of c-fos expression in hippocampus attenuating the alcohol-induced alteration of the stress-signal pathway.

REFERENCES

  • 1 May P A, Gossage J P, Kalberg W O et al.. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies.  Dev Disabil Res Rev. 2009;  15 176-192
  • 2 Sokol R J, Delaney-Black V, Nordstrom B. Fetal alcohol spectrum disorder.  JAMA. 2003;  290 2996-2999
  • 3 Lieber C S. Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998)—a review.  Alcohol Clin Exp Res. 1999;  23 991-1007
  • 4 Mitchell J J, Paiva M, Heaton M B. Vitamin E and beta-carotene protect against ethanol combined with ischemia in an embryonic rat hippocampal culture model of fetal alcohol syndrome.  Neurosci Lett. 1999;  263 189-192
  • 5 Spong C Y, Abebe D T, Gozes I, Brenneman D E, Hill J M. Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome.  J Pharmacol Exp Ther. 2001;  297 774-779
  • 6 Wilhelm D, Bender K, Knebel A, Angel P. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents.  Mol Cell Biol. 1997;  17 4792-4800
  • 7 Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal pathway tracing.  J Neurosci Methods. 1989;  29 261-265
  • 8 Melia K R, Ryabinin A E, Schroeder R, Bloom F E, Wilson M C. Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress.  J Neurosci. 1994;  14 5929-5938
  • 9 Ryabinin A E. Role of hippocampus in alcohol-induced memory impairment: implications from behavioral and immediate early gene studies.  Psychopharmacology (Berl). 1998;  139 34-43
  • 10 Poggi S H, Goodwin K M, Hill J M et al.. Differential expression of c-fos in a mouse model of fetal alcohol syndrome.  Am J Obstet Gynecol. 2003;  189 786-789
  • 11 Brenneman D E, Gozes I. A femtomolar-acting neuroprotective peptide.  J Clin Invest. 1996;  97 2299-2307
  • 12 Brenneman D E, Phillips T M, Festoff B W, Gozes I. Identity of neurotrophic molecules released from astroglia by vasoactive intestinal peptide.  Ann N Y Acad Sci. 1997;  814 167-173
  • 13 Brenneman D E, Hauser J, Neale E et al.. Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides.  J Pharmacol Exp Ther. 1998;  285 619-627
  • 14 Bassan M, Zamostiano R, Davidson A et al.. Complete sequence of a novel protein containing a femtomolar-activity-dependent neuroprotective peptide.  J Neurochem. 1999;  72 1283-1293
  • 15 Zhou F C, Sari Y, Powrozek T A, Spong C Y. A neuroprotective peptide antagonizes fetal alcohol exposure-compromised brain growth.  J Mol Neurosci. 2004;  24 189-199
  • 16 Vink J, Auth J, Abebe D T, Brenneman D E, Spong C Y. Novel peptides prevent alcohol-induced spatial learning deficits and proinflammatory cytokine release in a mouse model of fetal alcohol syndrome.  Am J Obstet Gynecol. 2005;  193(3 Pt 1) 825-829
  • 17 Offen D, Sherki Y, Melamed E, Fridkin M, Brenneman D E, Gozes I. Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson's disease.  Brain Res. 2000;  854 257-262
  • 18 Steingart R A, Solomon B, Brenneman D E, Fridkin M, Gozes I. VIP and peptides related to activity-dependent neurotrophic factor protect PC12 cells against oxidative stress.  J Mol Neurosci. 2000;  15 137-145
  • 19 Glazner G W, Boland A, Dresse A E, Brenneman D E, Gozes I, Mattson M P. Activity-dependent neurotrophic factor peptide (ADNF9) protects neurons against oxidative stress-induced death.  J Neurochem. 1999;  73 2341-2347
  • 20 Webster W S, Walsh D A, Lipson A H, McEwen S E. Teratogenesis after acute alcohol exposure in inbred and outbred mice.  Neurobehav Toxicol. 1980;  2 227-234
  • 21 Brenneman D E, Spong C Y, Hauser J M et al.. Protective peptides that are orally active and mechanistically nonchiral.  J Pharmacol Exp Ther. 2004;  309 1190-1197
  • 22 Incerti M, Vink J, Roberson R, Wood L, Abebe D, Spong C Y. Reversal of alcohol-induced learning deficits in the young adult in a model of fetal alcohol syndrome.  Obstet Gynecol. 2010;  115(2 Pt 1) 350-356
  • 23 Jang M H, Jung S B, Lee M H et al.. Influence of maternal alcohol administration on c-Fos expression in the hippocampus of infant rats.  Neurosci Lett. 2005;  378 44-48
  • 24 Sim Y J, Kim H, Shin M S et al.. Effect of postnatal treadmill exercise on c-Fos expression in the hippocampus of rat pups born from the alcohol-intoxicated mothers.  Brain Dev. 2008;  30 118-125
  • 25 Morris R G, Garrud P, Rawlins J N, O'Keefe J. Place navigation impaired in rats with hippocampal lesions.  Nature. 1982;  297 681-683
  • 26 Jarrard L E. On the role of the hippocampus in learning and memory in the rat.  Behav Neural Biol. 1993;  60 9-26
  • 27 Pawlak R, Skrzypiec A, Sulkowski S, Buczko W. Ethanol-induced neurotoxicity is counterbalanced by increased cell proliferation in mouse dentate gyrus.  Neurosci Lett. 2002;  327 83-86
  • 28 Vann S D, Brown M W, Erichsen J T, Aggleton J P. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests.  J Neurosci. 2000;  20 2711-2718
  • 29 He J, Yamada K, Nabeshima T. A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats.  Neuropsychopharmacology. 2002;  26 259-268
  • 30 Ryabinin A E, Melia K R, Cole M, Bloom F E, Wilson M C. Alcohol selectively attenuates stress-induced c-fos expression in rat hippocampus.  J Neurosci. 1995;  15(1 Pt 2) 721-730

Maddalena IncertiM.D. 

Unit on Perinatal and Developmental Neurobiology, Eunice Kennedy Shriver NICHD, NIH

Bldg 9/Room 1W125, 9 Memorial Drive, Bethesda, MD 20892-0925

Email: maddalena.incerti@gmail.com