ABSTRACT
Liver regeneration has traditionally been investigated in mammalian models. Recent technological developments in mouse genetics have greatly enhanced the resolving power of these studies. In addition, the zebrafish system has emerged as a complementary genetic system to study liver regeneration. One of the most promising attributes of the zebrafish system is its amenability to large-scale screens including genetic and chemical screens. Also, as our understanding of liver development is becoming more detailed, it is important to evaluate the commonalities and differences between organ development and regeneration.
KEYWORDS
Hepatopathology - liver - damage - hepatocyte - biliary cell - oval cell - hepatectomy
REFERENCES
1
Power C, Rasko J E.
Whither Prometheus' liver? Greek myth and the science of regeneration.
Ann Intern Med.
2008;
149
421-426
2 Cruveilhier L JB. Anatomie Pathologique du Corps Humain, ou, Description avec Figures Lithographiees et Coloriees, des Diverses Alterations Morbides dont le Corps Humain est Susceptible. Paris; Bailliere 1829-1833 398-399
3 Andral G. Medical Clinic. Vol. 1. Diseases of the Abdomen. Philadelphia; Barrington & Haswell 1843: 345-348
4
Tillmanns H.
Experimental und anatomische Untersuchungen uber Wundun der Leber und Niere.
Virchows Arch.
1879;
78
437-465
5
Higgins G M, Anderson R M.
Experimental pathology of the liver. Restoration of the liver of the white rat following partial surgical removal.
Arch Pathol (Chic).
1931;
12
186-202
6
Michalopoulos G K.
Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas.
Am J Pathol.
2010;
176
2-13
7
Palmes D, Spiegel H U.
Animal models of liver regeneration.
Biomaterials.
2004;
25
1601-1611
8
Burkhardt-Holm P, Oulmi Y, Schroeder A, Storch V, Braunbeck T.
Toxicity of 4-chloroaniline in early life stages of zebrafish (Danio rerio): II. Cytopathology and regeneration of liver and gills after prolonged exposure to waterborne 4-chloroaniline.
Arch Environ Contam Toxicol.
1999;
37
85-102
9
Sadler K C, Krahn K N, Gaur N A, Ukomadu C.
Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1.
Proc Natl Acad Sci U S A.
2007;
104
1570-1575
10
Curado S, Anderson R M, Jungblut B, Mumm J, Schroeter E, Stainier D Y.
Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies.
Dev Dyn.
2007;
236
1025-1035
11
Curado S, Stainier D Y, Anderson R M.
Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies.
Nat Protocols.
2008;
3
948-954
12
Curado S, Ober E A, Walsh S, Cortes-Hernandez P, Verkade H, Koehler C M, Stainier D YR.
The mitochondrial import gene—tomm22—is specifically required for hepatocyte survival and provides a liver regeneration model.
Dis Model Mech.
2010;
, In press
13
Dong J, Stuart G W.
Transgene manipulation in zebrafish by using recombinases.
Methods Cell Biol.
2004;
77
363-379
14
Ouyang X, Shestopalov I A, Sinha S et al..
Versatile synthesis and rational design of caged morpholinos.
J Am Chem Soc.
2009;
131
13255-13269
15
Shestopalov I A, Sinha S, Chen J K.
Light-controlled gene silencing in zebrafish embryos.
Nat Chem Biol.
2007;
3
650-651
16
Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk R H, Cuppen E.
Efficient target-selected mutagenesis in zebrafish.
Genome Res.
2003;
13
2700-2707
17
Doyon Y, McCammon J M, Miller J C et al..
Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases.
Nat Biotechnol.
2008;
26
702-708
18
Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A.
Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases.
Nat Biotechnol.
2008;
26
695-701
19
Chu J, Sadler K C.
New school in liver development: lessons from zebrafish.
Hepatology.
2009;
50
1656-1663
20
Si-Tayeb K, Lemaigre F P, Duncan S A.
Organogenesis and development of the liver.
Dev Cell.
2010;
18
175-189
21
Stöcker E, Heine W D.
Regeneration of liver parenchyma under normal and pathological conditions.
Beitr Pathol.
1971;
144
400-408
22
Overturf K, al-Dhalimy M, Ou C N, Finegold M, Grompe M.
Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.
Am J Pathol.
1997;
151
1273-1280
23
Laconi S, Pillai S, Porcu P P, Shafritz D A, Pani P, Laconi E.
Massive liver replacement by transplanted hepatocytes in the absence of exogenous growth stimuli in rats treated with retrorsine.
Am J Pathol.
2001;
158
771-777
24
Azuma H, Paulk N, Ranade A et al..
Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice.
Nat Biotechnol.
2007;
25
903-910
25
Fausto N, Campbell J S, Riehle K J.
Liver regeneration.
Hepatology.
2006;
43(2 Suppl 1)
S45-S53
26
Mancone C, Conti B, Amicone L et al..
Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes.
J Hepatol.
2010;
52
234-243
27
Tatematsu M, Ho R H, Kaku T, Ekem J K, Farber E.
Studies on the proliferation and fate of oval cells in the liver of rats treated with 2-acetylaminofluorene and partial hepatectomy.
Am J Pathol.
1984;
114
418-430
28
Evarts R P, Nagy P, Nakatsukasa H, Marsden E, Thorgeirsson S S.
In vivo differentiation of rat liver oval cells into hepatocytes.
Cancer Res.
1989;
49
1541-1547
29
Preisegger K H, Factor V M, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson S S.
Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease.
Lab Invest.
1999;
79
103-109
30
Factor V M, Radaeva S A, Thorgeirsson S S.
Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse.
Am J Pathol.
1994;
145
409-422
31
Duncan A W, Dorrell C, Grompe M.
Stem cells and liver regeneration.
Gastroenterology.
2009;
137
466-481
32
Michalopoulos G K.
Liver regeneration: alternative epithelial pathways.
Int J Biochem Cell Biol.
2009 September 27;
, (Epub ahead of print)
33
Shinozuka H, Lombardi B, Sell S, Iammarino R M.
Early histological and functional alterations of ethionine liver carcinogenesis in rats fed a choline-deficient diet.
Cancer Res.
1978;
38
1092-1098
34
Sackett S D, Li Z, Hurtt R et al..
Foxl1 is a marker of bipotential hepatic progenitor cells in mice.
Hepatology.
2009;
49
920-929
35
Haque S, Haruna Y, Saito K et al..
Identification of bipotential progenitor cells in human liver regeneration.
Lab Invest.
1996;
75
699-705
36
Fiel M I, Antonio L B, Nalesnik M A, Thung S N, Gerber M A.
Characterization of ductular hepatocytes in primary liver allograft failure.
Mod Pathol.
1997;
10
348-353
37
Faktor V M, Engel'gardt N V, Iazova A K, Lazareva M N, Poltoranina V S, Rudinskaia T D.
Common antigens of oval cells and cholangiocytes in the mouse. Their detection by using monoclonal antibodies.
Ontogenez.
1990;
21
625-632
38
Dorrell C, Erker L, Lanxon-Cookson K M et al..
Surface markers for the murine oval cell response.
Hepatology.
2008;
48
1282-1291
39
Rao M S, Subbarao V, Reddy J K.
Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion.
Cell Differ.
1986;
18
109-117
40
Reddy J K, Rao M S, Qureshi S A, Reddy M K, Scarpelli D G, Lalwani N D.
Induction and origin of hepatocytes in rat pancreas.
J Cell Biol.
1984;
98
2082-2090
41
Scarpelli D G, Rao M S.
Differentiation of regenerating pancreatic cells into hepatocyte-like cells.
Proc Natl Acad Sci U S A.
1981;
78
2577-2581
42
Wang X, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M.
Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells.
Am J Pathol.
2001;
158
571-579
43
Deutsch G, Jung J, Zheng M, Lóra J, Zaret K S.
A bipotential precursor population for pancreas and liver within the embryonic endoderm.
Development.
2001;
128
871-881
44
Chung W S, Shin C H, Stainier D Y.
Bmp2 signaling regulates the hepatic versus pancreatic fate decision.
Dev Cell.
2008;
15
738-748
45
Dong P D, Munson C A, Norton W et al..
Fgf10 regulates hepatopancreatic ductal system patterning and differentiation.
Nat Genet.
2007;
39
397-402
46
Wang H H, Lautt W W.
Evidence of nitric oxide, a flow-dependent factor, being a trigger of liver regeneration in rats.
Can J Physiol Pharmacol.
1998;
76
1072-1079
47
Thevananther S, Sun H, Li D et al..
Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes.
Hepatology.
2004;
39
393-402
48
Gonzales E, Julien B, Serriere-Lanneau V et al..
ATP release after partial hepatectomy regulates liver regeneration in the rat.
J Hepatol.
2009 October;
24
, (Epub ahead of print)
49
Crumm S, Cofan M, Juskeviciute E, Hoek J B.
Adenine nucleotide changes in the remnant liver: an early signal for regeneration after partial hepatectomy.
Hepatology.
2008;
48
898-908
50
Jirtle R L, Carr B I, Scott C D.
Modulation of insulin-like growth factor-II/mannose 6-phosphate receptors and transforming growth factor-beta 1 during liver regeneration.
J Biol Chem.
1991;
266
22444-22450
51
Huang W, Ma K, Zhang J et al..
Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.
Science.
2006;
312
233-236
52
Steinhardt A A, Gayyed M F, Klein A P et al..
Expression of Yes-associated protein in common solid tumors.
Hum Pathol.
2008;
39
1582-1589
53
Lu L, Li Y, Kim S M et al..
Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver.
Proc Natl Acad Sci U S A.
2010;
107
1437-1442
54
Song H, Mak K K, Topol L et al..
Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression.
Proc Natl Acad Sci U S A.
2010;
107
1431-1436
55
Apte U, Gkretsi V, Bowen W C et al..
Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase.
Hepatology.
2009;
50
844-851
56
Lindroos P M, Zarnegar R, Michalopoulos G K.
Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration.
Hepatology.
1991;
13
743-750
57
Matthews V B, Klinken E, Yeoh G C.
Direct effects of interleukin-6 on liver progenitor oval cells in culture.
Wound Repair Regen.
2004;
12
650-656
58
Knight B, Yeoh G C, Husk K L et al..
Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice.
J Exp Med.
2000;
192
1809-1818
59
Brooling J T, Campbell J S, Mitchell C, Yeoh G C, Fausto N.
Differential regulation of rodent hepatocyte and oval cell proliferation by interferon gamma.
Hepatology.
2005;
41
906-915
60
Jung Y, Brown K D, Witek R P et al..
Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans.
Gastroenterology.
2008;
134
1532-1543
61
Fleig S V, Choi S S, Yang L et al..
Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice.
Lab Invest.
2007;
87
1227-1239
62
Jakubowski A, Ambrose C, Parr M et al..
TWEAK induces liver progenitor cell proliferation.
J Clin Invest.
2005;
115
2330-2340
63
Fausto N.
Tweaking liver progenitor cells.
Nat Med.
2005;
11
1053-1054
64
Michalopoulos G K.
Liver regeneration.
J Cell Physiol.
2007;
213
286-300
65
Lepper C, Conway S J, Fan C M.
Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements.
Nature.
2009;
460
627-631
66
Otu H H, Naxerova K, Ho K et al..
Restoration of liver mass after injury requires proliferative and not embryonic transcriptional patterns.
J Biol Chem.
2007;
282
11197-11204
67
Zhang L, Theise N, Chua M, Reid L M.
The stem cell niche of human livers: symmetry between development and regeneration.
Hepatology.
2008;
48
1598-1607
68
Burke Z, Oliver G.
Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm.
Mech Dev.
2002;
118
147-155
69
Calmont A, Wandzioch E, Tremblay K D et al..
An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells.
Dev Cell.
2006;
11
339-348
70
Jung J, Zheng M, Goldfarb M, Zaret K S.
Initiation of mammalian liver development from endoderm by fibroblast growth factors.
Science.
1999;
284
1998-2003
71
Rossi J M, Dunn N R, Hogan B L, Zaret K S.
Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm.
Genes Dev.
2001;
15
1998-2009
72
Shin D, Shin C H, Tucker J et al..
Bmp and Fgf signaling are essential for liver specification in zebrafish.
Development.
2007;
134
2041-2050
73
Zhang W, Yatskievych T A, Baker R K, Antin P B.
Regulation of Hex gene expression and initial stages of avian hepatogenesis by Bmp and Fgf signaling.
Dev Biol.
2004;
268
312-326
74
McLin V A, Rankin S A, Zorn A M.
Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development.
Development.
2007;
134
2207-2217
75
Ober E A, Verkade H, Field H A, Stainier D YR.
Mesodermal Wnt2b signalling positively regulates liver specification.
Nature.
2006;
442
688-691
76
Tan X, Yuan Y, Zeng G et al..
Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development.
Hepatology.
2008;
47
1667-1679
77
Kung J W, Currie I S, Forbes S J, Ross J A.
Liver development, regeneration, and carcinogenesis.
J Biomed Biotechnol.
2010;
2010
984248
78
Monga S P, Pediaditakis P, Mule K, Stolz D B, Michalopoulos G K.
Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration.
Hepatology.
2001;
33
1098-1109
79
Goessling W, North T E, Lord A M et al..
APC mutant zebrafish uncover a changing temporal requirement for Wnt signaling in liver development.
Dev Biol.
2008;
320
161-174
80
Sodhi D, Micsenyi A, Bowen W C, Monga D K, Talavera J C, Monga S P.
Morpholino oligonucleotide-triggered beta-catenin knockdown compromises normal liver regeneration.
J Hepatol.
2005;
43
132-141
81
Tan X, Behari J, Cieply B, Michalopoulos G K, Monga S P.
Conditional deletion of beta-catenin reveals its role in liver growth and regeneration.
Gastroenterology.
2006;
131
1561-1572
82
Goessling W, North T E, Loewer S et al..
Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration.
Cell.
2009;
136
1136-1147
83
Monga S P.
Role of Wnt/beta-catenin signaling in liver metabolism and cancer.
Int J Biochem Cell Biol.
2009 September;
9
, (Epub ahead of print)
84
Nejak-Bowen K, Monga S P.
Wnt/beta-catenin signaling in hepatic organogenesis.
Organogenesis.
2008;
4
92-99
85
Kan N G, Junghans D, Izpisua Belmonte J C.
Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy.
FASEB J.
2009;
23
3516-3525
86
Steiling H, Wüstefeld T, Bugnon P et al..
Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration.
Oncogene.
2003;
22
4380-4388
87
Sturm J, Keese M, Zhang H et al..
Liver regeneration in FGF-2-deficient mice: VEGF acts as potential functional substitute for FGF-2.
Liver Int.
2004;
24
161-168
88
Sugimoto H, Yang C, LeBleu V S et al..
BMP-7 functions as a novel hormone to facilitate liver regeneration.
FASEB J.
2007;
21
256-264
89
Zaret K S.
Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation.
Nat Rev Genet.
2008;
9
329-340
90
Li L, Krantz I D, Deng Y et al..
Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.
Nat Genet.
1997;
16
243-251
91
McDaniell R, Warthen D M, Sanchez-Lara P A et al..
NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway.
Am J Hum Genet.
2006;
79
169-173
92
Oda T, Elkahloun A G, Pike B L et al..
Mutations in the human Jagged1 gene are responsible for Alagille syndrome.
Nat Genet.
1997;
16
235-242
93
Macias-Silva M, Li W, Leu J I, Crissey M A, Taub R.
Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration.
J Biol Chem.
2002;
277
28483-28490
94
Romero-Gallo J, Sozmen E G, Chytil A et al..
Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy.
Oncogene.
2005;
24
3028-3041
95
Thenappan A, Li Y, Kitisin K et al..
Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver.
Hepatology.
2010;
51
1373-1382
96
Nguyen L N, Furuya M H, Wolfraim L A et al..
Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation.
Hepatology.
2007;
45
31-41
97
Kuwahara R, Kofman A V, Landis C S, Swenson E S, Barendswaard E, Theise N D.
The hepatic stem cell niche: identification by label-retaining cell assay.
Hepatology.
2008;
47
1994-2002
98
Dovey M, Patton E E, Bowman T et al..
Topoisomerase II alpha is required for embryonic development and liver regeneration in zebrafish.
Mol Cell Biol.
2009;
29
3746-3753
Silvia CuradoPh.D.
Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Liver Center, Diabetes Center and the Cardiovascular Research Institute, University of California, San Francisco
1550 Fourth Street, San Francisco, CA 94158-2324
eMail: Silvia.Curado@med.nyu.edu