RSS-Feed abonnieren
DOI: 10.1055/s-0030-1255445
Structure and Function of a Recombinant von Willebrand Factor Drug Candidate
Publikationsverlauf
Publikationsdatum:
15. Juli 2010 (online)
ABSTRACT
The complex structure, large size, and multiple posttranslational modifications of von Willebrand factor (VWF) presented a technological challenge for the production of recombinant VWF (rVWF). Nonetheless, we developed an rVWF product for treating von Willebrand disease, whereupon rVWF is coexpressed with recombinant factor VIII (rFVIII) in Chinese hamster ovary cells used to produce rFVIII for the treatment of hemophilia A. Here we describe the characterization of the structure and function of the rVWF drug product, with a focus on its in vitro platelet aggregation and matrix protein binding functions. Electron microscopy and multimer analysis revealed a highly organized structure for the rVWF protein, with a homogeneous multimer distribution including ultrahigh molecular weight multimers. The specific activity for binding to collagen and platelets mediated by ristocetin is higher in rVWF than in commercial plasma-derived VWF-FVIII complex products. The affinity and binding capacity of rVWF to FVIII is comparable to VWF in plasma. rVWF effectively binds to platelets and promotes platelet adhesion under shear stress similar to VWF in human plasma.
KEYWORDS
Recombinant von Willebrand factor - VWF - von Willebrand disease - VWD - hemophilia - structure - platelet binding
REFERENCES
- 1 Plaimauer B, Schlokat U, Turecek P L et al.. Recombinant von Willebrand factor: preclinical development. Semin Thromb Hemost. 2001; 27(4) 395-403
- 2 Budde U, Schneppenheim R. Von Willebrand factor and von Willebrand disease. Rev Clin Exp Hematol. 2001; 5(4) 335-368
- 3 Sadler J E. von Willebrand factor assembly and secretion. J Thromb Haemost. 2009; 7(Suppl 1) 24-27
- 4 Ruggeri Z M. The role of von Willebrand factor in thrombus formation. Thromb Res. 2007; 120(Suppl 1) S5-S9
- 5 Reininger A J. VWF attributes—impact on thrombus formation. Thromb Res. 2008; 122(Suppl 4) S9-S13
- 6 Reininger A J. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia. 2008; 14(Suppl 5) 11-26
- 7 Sadler J E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998; 67 395-424
- 8 Kroll M H, Hellums J D, McIntire L V, Schafer A I, Moake J L. Platelets and shear stress. Blood. 1996; 88(5) 1525-1541
- 9 Goto S, Salomon D R, Ikeda Y, Ruggeri Z M. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets. J Biol Chem. 1995; 270(40) 23352-23361
- 10 Lenting P J, van Mourik J A, Mertens K. The life cycle of coagulation factor VIII in view of its structure and function. Blood. 1998; 92(11) 3983-3996
- 11 Weiss H J, Sussman I I, Hoyer L W. Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand's disease. J Clin Invest. 1977; 60(2) 390-404
- 12 Denis C V, Christophe O D, Oortwijn B D, Lenting P J. Clearance of von Willebrand factor. Thromb Haemost. 2008; 99(2) 271-278
- 13 Fischer B E. Recombinant von Willebrand factor: potential therapeutic use. J Thromb Thrombolysis. 1999; 8(3) 197-205
- 14 Turecek P L, Mitterer A, Matthiessen H P et al.. Development of a plasma- and albumin-free recombinant von Willebrand factor. Hamostaseologie. 2009; 29(Suppl 1) S32-S38
- 15 Blanchette V S, Shapiro A D, Liesner R J rAHF-PFM Clinical Study Group et al. Plasma and albumin-free recombinant factor VIII: pharmacokinetics, efficacy and safety in previously treated pediatric patients. J Thromb Haemost. 2008; 6(8) 1319-1326
- 16 Fretto L J, Fowler W E, McCaslin D R, Erickson H P, McKee P A. Substructure of human von Willebrand factor. Proteolysis by V8 and characterization of two functional domains. J Biol Chem. 1986; 261(33) 15679-15689
- 17 Ohmori K, Fretto L J, Harrison R L, Switzer M E, Erickson H P, McKee P A. Electron microscopy of human factor VIII/Von Willebrand glycoprotein: effect of reducing reagents on structure and function. J Cell Biol. 1982; 95(2 Pt 1) 632-640
- 18 Ruggeri Z M, Zimmerman T S. The complex multimeric composition of factor VIII/von Willebrand factor. Blood. 1981; 57(6) 1140-1143
- 19 Aihara M, Sawada Y, Ueno K et al.. Visualization of von Willebrand factor multimers by immunoenzymatic stain using avidin-biotin peroxidase complex. Thromb Haemost. 1986; 55(2) 263-267
- 20 Sadler J E. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood. 2008; 112(1) 11-18
- 21 Franchini M, Mannucci P M. Von Willebrand factor: another janus-faced hemostasis protein. Semin Thromb Hemost. 2008; 34(7) 663-669
- 22 Furlan M, Robles R, Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996; 87(10) 4223-4234
- 23 Varadi K, Rottensteiner H, Vejda S et al.. Species-dependent variability of ADAMTS13-mediated proteolysis of human recombinant von Willebrand factor. J Thromb Haemost. 2009; 7(7) 1134-1142
- 24 Berndt M C, Ward C M, Booth W J, Castaldi P A, Mazurov A V, Andrews R K. Identification of aspartic acid 514 through glutamic acid 542 as a glycoprotein Ib-IX complex receptor recognition sequence in von Willebrand factor. Mechanism of modulation of von Willebrand factor by ristocetin and botrocetin. Biochemistry. 1992; 31(45) 11144-11151
- 25 Hulstein J J, de Groot P G, Silence K, Veyradier A, Fijnheer R, Lenting P J. A novel nanobody that detects the gain-of-function phenotype of von Willebrand factor in ADAMTS13 deficiency and von Willebrand disease type 2B. Blood. 2005; 106(9) 3035-3042
- 26 Bendetowicz A V, Morris J A, Wise R J, Gilbert G E, Kaufman R J. Binding of factor VIII to von Willebrand factor is enabled by cleavage of the von Willebrand factor propeptide and enhanced by formation of disulfide-linked multimers. Blood. 1998; 92(2) 529-538
- 27 Vlot A J, Koppelman S J, Berg van den M H, Bouma B N, Sixma J J. The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor. Blood. 1995; 85(11) 3150-3157
- 28 Sadler J E. von Willebrand factor: two sides of a coin. J Thromb Haemost. 2005; 3(8) 1702-1709
- 29 Favaloro E J. Clinical utility of the PFA-100. Semin Thromb Hemost. 2008; 34(8) 709-733
- 30 Soslau G, Class R, Morgan D A et al.. Unique pathway of thrombin-induced platelet aggregation mediated by glycoprotein Ib. J Biol Chem. 2001; 276(24) 21173-21183
- 31 Sakariassen K S, Muggli R, Baumgartner H R. Measurements of platelet interaction with components of the vessel wall in flowing blood. Methods Enzymol. 1989; 169 37-70
- 32 Ruggeri Z M, Mendolicchio G L. Adhesion mechanisms in platelet function. Circ Res. 2007; 100(12) 1673-1685
- 33 Federici A B. The factor VIII/von Willebrand factor complex: basic and clinical issues. Haematologica. 2003; 88(6) , EREP02
- 34 Kokame K, Matsumoto M, Soejima K et al.. Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity. Proc Natl Acad Sci U S A. 2002; 99(18) 11902-11907
- 35 Levy G G, Nichols W C, Lian E C et al.. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001; 413(6855) 488-494
- 36 Plaimauer B, Zimmermann K, Völkel D et al.. Cloning, expression, and functional characterization of the von Willebrand factor-cleaving protease (ADAMTS13). Blood. 2002; 100(10) 3626-3632
- 37 Turecek P L, Furlan M, Lämmle B et al.. Cleavage of recombinant von Willebrand Factor (vWF) by a vWF-depolymerizing protease. Blood. 1996; 88(Suppl 1) 326a , Abstract 1291
- 38 Lethagen S, Carlson M, Hillarp A. A comparative in vitro evaluation of six von Willebrand factor concentrates. Haemophilia. 2004; 10(3) 243-249
- 39 Budde U, Metzner H J, Müller H G. Comparative analysis and classification of von Willebrand factor/factor VIII concentrates: impact on treatment of patients with von Willebrand disease. Semin Thromb Hemost. 2006; 32(6) 626-635
- 40 Hubbard A R. von Willebrand factor standards for plasma and concentrate testing. Semin Thromb Hemost. 2006; 32(5) 522-528
- 41 Muchitsch E-M, Dietrich B, Rottensteiner H, Auer W, Nehrbass D, Gritsch H, Ehrlich H J, Schwarz H P, Turecek P L. Non-clinical testing of human recombinant von Willebrand factor: ADAMTS13 cleavage capacity in animals as criterion for species suitability. Semin Thromb Hemost. 2010; 35(5) 522-528
Peter L TurecekPh.D.
Baxter Innovations GmbH, Industriestrasse 67
1220, Vienna, Austria
eMail: peter_turecek@baxter.com