RSS-Feed abonnieren
DOI: 10.1055/s-0030-1255900
© Georg Thieme Verlag KG Stuttgart · New York
Neue Entwicklungen in der MSCT
New developments in MSCTPublikationsverlauf
Publikationsdatum:
16. Dezember 2010 (online)
Zusammenfassung
Im Fokus der Weiterentwicklung in der MSCT stehen aktuell neue Anwendungen und die Softwareentwicklung. Ein wichtiges Thema ist dabei die Multispektrenbildgebung, die unter Verwendung von mindestens 2 verschiedenen Energiestufen eine Gewebedifferenzierung erlaubt. Neben der Differenzierung von Kalk und Jod für die CT-Angiografie und für onkologische Fragestellungen findet sie zunehmendes Interesse auch in anderen Anwendungsfeldern. Durch die ultraschnelle Bildgebung werden Atem- und Pulsationsartefakte weitgehend eliminiert, sodass eine Untersuchung auch bei mangelnder Compliance des Patienten meist ohne Sedierung oder Narkose möglich wird. Perfusionsuntersuchungen können durch große Detektorbreiten oder durch die sog. Shuffle-Technik auf ganze Körperregionen ausgedehnt werden. Neue Softwareentwicklungen umfassen iterative Rekonstruktionsalgorithmen und die organspezifische Dosismodulation für die Dosisreduktion.
Abstract
Progress in MSCT is focused on new applications and software development. A hot topic is multispectral imaging which allows for tissue differentiation using at least two energy-levels. Besides differentiation of calcification and jodine in CT-angiography and oncologic imaging, there is also increasing interest in other application fields. Ultrafast imaging nearly eliminates breathing and pulsation artifacts allowing examination of non-compliant patients without sedation or anesthesia. Perfusion can now be extended to large body regions using large detectors or applying shuffle-techniques. New software developments include iterative reconstruction and organ specific dose modulation allowing for dose reduction and for protection of radiosensitive organs.
Keywords
MSCT - multi detector row CT - new developments
Kernaussagen
-
In der MSCT liegt der Fokus der Weiterentwicklungen auf neuen Anwendungen und der Softwareentwickung – weniger auf der weiteren Zunahme der Zeilenzahl.
-
Die Multispektrenbildgebung (Dual Energy) erlaubt die Analyse von Gewebezusammensetzungen.
-
Durch die ultraschnelle Bildgebung werden auch bei mangelnder Compliance des Patienten Untersuchungen ohne Sedierung oder Intubation möglich.
-
Die iterativen Rekonstruktionsalgorithmen und die organspezifische Dosismodulation haben das Potenzial, die Dosis zu reduzieren bzw. strahlensensible Organe zu schonen.
Literatur
- 1 Vetter J R, Perman W H, Kalender W A. et al . Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys. 1986; 13 340-343
- 2 Johnson T R. et al . Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007; 17 1510-1517
- 3 Lell M M, Kramer M, Klotz E. et al . Carotid computed tomography angiography with automated bone suppression: a comparative study between dual energy and bone subtraction techniques. Invest Radiol. 2009; 44 322-328
- 4 Meyer B C. et al . Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol. 2008; 68 414-422
- 5 Morhard D. et al . Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Invest Radiol. 2009; 44 293-297
- 6 Sommer W H. et al . The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol. 2009; 44 285-292
- 7 Thomas C. et al . Automatic lumen segmentation in calcified plaques: dual-energy CT versus standard reconstructions in comparison with digital subtraction angiography. Am J Roentgenol. 2010; 194 1590-1595
- 8 Remy-Jardin M. et al . Thoracic applications of dual energy. Radiol Clin North Am. 2010; 48 193-205
- 9 Graser A, Johnson T R, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009; 19 13-23
- 10 Graser A. et al . Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images?. Radiology. 2009; 252 433-440
- 11 Stolzmann P. et al . Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008; 249 682-691
- 12 Chandarana H. et al . Abdominal aorta: evaluation with dual-source dual-energy multidetector CT after endovascular repair of aneurysms – initial observations. Radiology. 2008; 249 692-700
- 13 Bauer R W, Schulz J R, Zedler B, Graf T G, Vogl T J. Compound analysis of gallstones using dual energy computed tomography-Results in a phantom model. Eur J Radiol. 2010; 75 e74-80
- 14 Boll D T. et al . Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition – pilot study. Radiology. 2009; 250 813-820
- 15 Stolzmann P. et al . Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res. 2008; 36 133-138
- 16 Thomas C. et al . Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol. 2009; 19 1553-1559
- 17 Artmann A, Ratzenbock M, Noszian I, Trieb K. Dual energy CT–a new perspective in the diagnosis of gout. Rofo. 2010; 182 261-266
- 18 Nicolaou S. et al . Dual-energy CT as a potential new diagnostic tool in the management of gout in the acute setting. AJR Am J Roentgenol. 2010; 194 1072-1078
- 19 Deng K, Sun C, Liu C, Ma R. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography. Clin Imaging. 2009; 33 384-389
- 20 Holmes D R. et al . Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol. 2008; 68 409-413
- 21 Yu L, Primak A N, Liu X, McCollough C H. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys. 2009; 36 1019-1024
- 22 Kim K S. et al . Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies. Invest Radiol. 2010; 45 149-157
- 23 Marin D. et al . Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection – initial clinical experience. Radiology. 2009; 251 771-779
- 24 Yeh B M. et al . Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol. 2009; 193 47-54
- 25 Flohr T G. et al . Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality. Med Phys. 2009; 36 5641-5653
- 26 Lell M. et al . Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol. 2009; 19 2576-2583
- 27 Leschka S. et al . Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol. 2009; 19 2896-2903
- 28 Pflederer T. et al . Radiation exposure and image quality in staged low-dose protocols for coronary dual-source CT angiography: a randomized comparison. Eur Radiol. 2010; 20 1197-1206
- 29 Schwarz F. et al . Dual-energy CT of the heart-principles and protocols. Eur J Radiol. 2008; 68 423-433
- 30 Stolzmann P. et al . Prospective and retrospective ECG-gating for CT coronary angiography perform similarly accurate at low heart rates. Eur J Radiol. 2010; [Epub ahead of print]
- 31 Flohr T G. et al . Pushing the envelope: new computed tomography techniques for cardiothoracic imaging. J Thorac Imaging. 2010; 25 100-111
- 32 Nieman K. et al . Reperfused myocardial infarction: contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology. 2008; 247 49-56
- 33 Konig M, Klotz E, Heuser L. Cerebral perfusion CT: theoretical aspects, methodical implementation and clinical experience in the diagnosis of ischemic cerebral infarction. Rofo. 2000; 172 210-218
- 34 Konig M. Brain perfusion CT in acute stroke: current status. Eur J Radiol. 2003; 45 (Suppl. 1) S11-S22
- 35 Kandel S. et al . Whole-organ perfusion of the pancreas using dynamic volume CT in patients with primary pancreas carcinoma: acquisition technique, post-processing and initial results. Eur Radiol. 2009; 19 2641-2646
- 36 Silva A C, Lawder H J, Hara A. et al . Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010; 194 191-199
- 37 Hara A K. et al . Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol. 2009; 193 764-771
- 38 Marin D. et al . Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm – initial clinical experience. Radiology. 2010; 254 145-153
Priv.-Doz. Dr. med. Hoen-oh Shin
Medizinische Hochschule Hannover
Institut für Radiologie
Carl-Neuberg-Straße 1
30625 Hannover
Telefon: 0511 532-3421
Fax: 0511 532-3885
eMail: shin.hoen-oh@mh-hannover.de