Synlett 2010(15): 2314-2318  
DOI: 10.1055/s-0030-1258041
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Orthogonally Protected Angular Nitrogen Polyheterocycles via CpCo-Catalyzed Pyridine Formation

Yves Micloa, Pierre Garciaa, Yannick Evannob, Pascal Georgeb, Mireille Sevrinb, Max Malacria*a, Vincent Gandon*a, Corinne Aubert*a
a UPMC Univ Paris 06, IPCM UMR 7201, FR2769, 4 Place Jussieu, 75252 Paris Cedex 05, France, Fax: +33(1)44277360; e-Mail: vincent.gandon@u-psud.fr; corinne.aubert@upmc.fr;
b Sanofi-Aventis R&D, CNS Research Department, 31 Avenue Paul Vaillant-Couturier, 92220 Bagneux, France
Further Information

Publication History

Received 1 July 2010
Publication Date:
12 August 2010 (online)

Abstract

Unprecedented nitrogen polyheterocycles have been prepared by means of intramolecular Co-catalyzed [2+2+2] cycloaddition of two alkynes to one nitrile. They exhibit two nitrogen-containing rings fused in an angular fashion to one pyridine unit. Several relative positions of the nitrogen atoms have been studied, giving rise to eight different new scaffolds. In order to allow selective functionalization of the two amino groups, orthogonal protecting groups (PG¹ and PG²) were introduced prior to cyclization. Eleven combinations of seven different protecting groups (Bn, COCF3, Cbz, Boc, Ts, SO2-2-py, Ns) were tested, most of them being perfectly tolerated under the cyclization conditions.

    References and Notes

  • For reviews on [2+2+2] cycloaddition reactions, see:
  • 1a Vollhardt KPC. Angew. Chem., Int. Ed. Engl.  1984,  23:  539 
  • 1b Varela J. Saá C. Chem. Rev.  2003,  103:  3787 
  • 1c Yamamoto Y. Curr. Org. Chem.  2005,  9:  503 
  • 1d Gandon V. Aubert C. Malacria M. Curr. Org. Chem.  2005,  9:  1699 
  • 1e Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem.  2005,  4741 
  • 1f Gandon V. Aubert C. Malacria M. Chem. Commun.  2006,  2209 
  • 1g Chopade PR. Louie J. Adv. Synth. Catal.  2006,  348:  2307 
  • 1h Agenet N. Gandon V. Buisine O. Slowinski F. Aubert C. Malacria M. In Organic Reactions   Vol. 68:  RajanBabu TV. John Wiley and Sons; Hoboken: 2007.  p.1-302  
  • 1i Heller B. Hapke M. Chem. Soc. Rev.  2007,  36:  1085 
  • 1j Tanaka K. Synlett  2007,  1977 
  • 1k Maryanoff BE. Zhang H.-C. ARKIVOC  2007,  (xii):  7 
  • 1l Varela J. Saá C. Synlett  2008,  2571 
  • 1m Tanaka K. Chem. Asian J.  2009,  4:  508 
  • 1n Hess W. Treutwein J. Hilt G. Synthesis  2008,  3537 
  • 1o Shibata T. Tsuchikama K. Org. Biomol. Chem.  2008,  1317 
  • 1p Scheuermann née Taylor CJ. Ward BD. New J. Chem.  2008,  32:  1850 
  • 1q Lebuf D. Gandon V. Malacria M. In Handbook of Cyclization Reactions   Vol. 1:  Ma S. Wiley-VCH; Weinheim: 2009.  p.367-406  
  • 2 Zhou Y. Porco JA. Snyder JK. Org. Lett.  2007,  9:  393 
  • 3 Zhou Y. Beeler AB. Cho S. Wang Y. Franzblau SG. Snyder JK. J. Comb. Chem.  2008,  10:  534 
  • For recent reviews on the chemistry of ynamides, see:
  • 4a Evano G. Coste A. Jouvin K. Angew. Chem. Int. Ed.  2010,  49:  2840 
  • 4b DeKorver KA. Li H. Lohse AG. Hayashi R. Lu Z. Zhang Y. Hsung RP. Chem. Rev.  2010,  in press; DOI: 10.1021/cr100003s
  • 5 Garcia P. Moulin S. Miclo Y. Leboeuf D. Gandon V. Aubert C. Malacria M. Chem. Eur. J.  2009,  15:  2129 
  • Examples of intramolecular [2+2+2] cycloaddition of two alkynes to one nitrile are rare, see ref. 2, 3, 5, and:
  • 6a Garcia L. Pla-Quintana A. Roglans A. Parella T. Eur. J. Org. Chem.  2010,  3407 
  • 6b Meißner A. Groth U. Synlett  2010,  1051 
  • 6c Chang H.-T. Jeganmohan M. Cheng C.-H. Org. Lett.  2007,  9:  505 
  • 6d Yamomoto Y. Kinpara K. Ogawa R. Nishiyama H. Itoh K. Chem. Eur. J.  2006,  12:  5618 
  • 6e Groth U. Huhn T. Kesenheimer C. Kalogerakis A. Synlett  2005,  1758 
  • 6f Nicolaus N. Strauss S. Neudörfl J.-M. Prokop A. Schmalz H.-G. Org. Lett.  2009,  11:  341 
  • 7a Green TW. Wuts PGM. Protective Groups in Organic Synthesis   3rd ed.:  John Wiley and Sons; New York: 1999. 
  • 7b Kocieński PJ. Protecting Groups   3rd ed.:  Thieme; Stuttgart: 2005. 
  • The 2-pyridylsulfonyl group can be easily cleaved using for instance magnesium in methanol, see:
  • 8a Pak CS. Lim DS. Synth. Commun.  2001,  31:  2209 
  • 8b On the other hand, the 2-nitrobenzenesulfonyl group can be removed using for instance thiophenol in the presence of potassium carbonate, see: Fukuyama T. Jow C.-K. Cheung M. Tetrahedron Lett.  1995,  36:  6373 
  • 9 Cruickshank KA. Stockwell DL. Tetrahedron Lett.  1988,  29:  5221 
  • 10 Brillon D. Deslongchamps P. Can. J. Chem.  1987,  65:  43 
  • 11 Summa V. Petrocchi A. Matassa VG. Gardelli C. Muraglia E. Rowley M. Paz Gonzalez O. Laufer R. Monteagudo E. Pace P. J. Med. Chem.  2006,  49:  6646 
  • 12 Masquelin T. Obrecht D. Synthesis  1995,  276 
  • 13a McDougal PG. Rico JG. Oh YI. Condon BD.
    J. Org. Chem.  1986,  51:  3388 
  • 13b Guorong C. Wei Z. Dawei M. Tetrahedron  2006,  62:  5697 
  • 14 Hughes DL. In Organic Reactions   Vol. 42:  John Wiley and Sons; Hoboken: 1992. 
  • 15 The use of standard Mitsunobu conditions, Ph3P/DEAD, proved less efficient than Bu3P/ADDP: Tsunoda T. Yamamiya Y. Ito S. Tetrahedron Lett.  1993,  34:  1639 
  • 16 Bergeson RJ. McManis JS. J. Org. Chem.  1988,  53:  3108 
  • 17 Neustadt BR. Tetrahedron Lett.  1994,  35:  379 
  • 18 Nyasse B. Grehn L. Regnarsson U. Chem. Commun.  1997,  1017 
  • 19 Efskind J. Römming C. Undheim K. J. Chem. Soc., Perkin Trans. 1  2001,  2697 
  • 20 Marquis RW. Ru Y. LoCastro SM. Zeng J. Yamashita DS. Oh H.-J. Erhard KF. Davis LD. Tomaszek TA. Tew D. Salyers K. Proksch J. Ward K. Smith B. Levy M. Cummings MD. Haltiwanger RC. Trescher G. Wang B. Hemling ME. Quinn CJ. Cheng H.-Y. Lin F. Smith WW. Janson CA. Zhao B. McQueney MS. D’Alessio K. Lee C.-P. Marzulli A. Dodds RA. Blake S. James IE. Gress CJ. Bradley BR. Lark MW. Gowen M. Veber DF. J. Med. Chem.  2001,  44:  1380 
  • 22a For technical details about the visible light irradiation, see: Agenet N. Mirebeau J.-H. Petit M. Thouvenot R. Gandon V. Malacria M. Aubert C. Organometallics  2007,  26:  819 
  • 22b

    Procedure for [2+2+2] Cycloadditions
    To a refluxing solution of the starting material in xylenes (c 0.1 M) under argon was added 5 mol% of cyclopentadienyledicarbonyl cobalt, and the mixture was irradiated (visible light) using a 300 W halogen lamp until completion of the reaction (TLC monitoring). After removal of the volatiles under reduced pressure, the crude mixture was purified by flash chromatography (gradient mixtures of PE and EtOAc), affording the corresponding tricyclic pyridines.
    Compound 2f: ¹H NMR (400 MHz, C6D6, 70 ˚C): δ = 2.84 (t, J = 6.0 Hz, 2 H), 3.46 (br s, 2 H), 4.18 (s, 2 H), 4.24 (br s,2 H), 4.44 (br s, 2 H), 5.30 (s, 2 H), 7.20-7.31 (m, 3 H), 7.45 (d, J = 7.6 Hz, 2 H), 8.14 (s, 1 H). ¹³C NMR (100 MHz, C6D6): δ = 31.0-32.2 (CH2), 41.2-42.1 (CH2), 42.8-43.4 (CH2), 49.5-49.9 (CH2), 50.4-50.7 (CH2), 67.3 (CH2), 117.03 (q, J = 286 Hz, CF3), 121.7-121.9 (C), 128.4 (CH), 128.5 (CH), 128.8 (CH), 131.3-131.7 (C), 137.4 (C), 142.3-142.9 (m, CH), 143.1-143.4 (C), 151.5-151.6 (C), 155.5 (q, J = 36 Hz, C). ¹9F NMR (376 MHz, CDCl3): δ = -69.7. IR (neat): 3089, 3064, 3033, 2949, 2864, 1689, 1138, 730 cm. Mp 144.1 ˚C. HRMS: m/z calcd for C20H19O3N3F3: 406.1370; found: 406.13727.
    Compound 2i: ¹H NMR (400 MHz, CDCl3): δ = 1.46 (s, 9 H), 2.78 (br s, 2 H), 3.17 (br s, 2 H), 3.59 (br s, 4 H), 4.69-4.72 (2 s, 2 H), 4.78 (br s, 2 H), 5.20 (s, 2 H), 7.28-7.41 (m, 5 H), 8.22-8.28 (2 s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 28.5 (CH3), 28.7 (CH2), 31.3-31.8 (m, CH2), 40.1-45.9 (m, 2 CH2), 50.7-51.2 (CH2), 51.3-51.8 (CH2), 67.3-67.4 (CH2), 80.1 (C), 128.0 (CH), 128.3 (CH), 128.6 (CH), 130.5-131.4 (m, 2 C), 136.6 (C), 140.8-140.9 (CH), 145.6-145.9 (m, 2 C), 154.7-155.0 (C), 159.7 (C). IR (neat): 2974, 1692, 1414 cm. Mp 154.1 ˚C. HRMS: m/z calcd for C24H30O4N3: 424.22308; found: 424.22297.
    Compound 2k: ¹H NMR (400 MHz, CDCl3): δ = 2.52-2.59 (m, 4 H), 2.68-2.73 (m, 2 H), 3.08-3.10 (m, 2 H), 3.55 (s, 2 H), 4.56 (s, 1 H), 4.61 (s, 1 H), 4.67 (s, 1 H), 4.69 (s, 1 H), 5.12 (s, 2 H), 7.15-7.30 (m, 11 H), 8.10-8.15 (2 s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 30.7-30.8 (CH2), 39.3 (CH2), 50.7-51.1-51.2-51.6 (mixture of slow interconverting rota-mers) (2 CH2), 53.7 (CH2), 54.2 (CH2), 63.5 (CH2), 67.3 (CH2), 127.2 (CH), 128.0 (CH), 128.2 (CH), 128.4 (CH), 128.6 (CH), 129.1 (CH), 130.1-131.1 (C), 131.4-131.6 (C), 136.7 (C), 138.5 (C), 140.5-140.8 (CH), 144.5-144.8 (C), 154.8 (C), 161.1-161.2 (C). IR (neat): 2942, 1703, 1412 cm. HRMS: m/z calcd for C23H28O2N3: 414.21760; found 414.21754.

  • For theoretical calculations on the formation of cobalta-cyclopentadienes and their reactivity, see:
  • 24a Xu R. Winget P. Clark T. Eur. J. Inorg. Chem.  2008,  2874 
  • 24b Agenet N. Gandon V. Vollhardt KPC. Malacria M. Aubert MC. J. Am. Chem. Soc.  2007,  129:  8860 
  • 24c Aubert C. Gandon V. Geny A. Heckrodt TJ. Malacria M. Paredes E. Vollhardt KPC. Chem. Eur. J.  2007,  13:  7466 
  • 24d Gandon V. Agenet N. Vollhardt KPC. Malacria M. Aubert C. J. Am. Chem. Soc.  2006,  128:  8509 
  • 24e Dahy AA. Koga N. Bull. Chem. Soc. Jpn.  2005,  78:  781 
  • 24f Dahy AA. Suresh CH. Koga N. Bull. Chem. Soc. Jpn.  2005,  78:  792 
  • 24g Veiros LF. Dazinger G. Kirchner K. Calhorda MJ. Schmid R. Chem. Eur. J.  2004,  10:  5860 
  • 25 For a DFT study of the mechanism of pyridine formation via [2+2+2] cycloaddition, see: Dazinger G. Torres-Rodrigues M. Kirchner K. Calhorda MJ. Costa PJ. J. Organomet. Chem.  2006,  691:  4434 
21

Excellent yields of Mitsunobu reactions in the presence of the 2-nitrobenzenesulfonyl group have been reported, see ref. 8b.

23

It is worthy of note that attempts to cyclize monoprotected diyne nitriles such as 16, 23, or 31 failed.

26

Also we cannot exclude catalyst deactivation by the Ns group.