Synlett 2010(12): 1862-1864  
DOI: 10.1055/s-0030-1258118
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Diastereoselective Synthesis of Phosphorylated Dihydro-1H-pyrazoles from Dialkyl Phosphites, Acetylenic Esters, and Hydrazonoyl Chlorides

Issa Yavari*, Gholamhossein Khalili
Chemistry Department, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
Fax: +98(21)88006544; e-Mail: yavarisa@modares.ac.ir;
Further Information

Publication History

Received 26 April 2010
Publication Date:
30 June 2010 (online)

Abstract

The 1:1 zwitterionic intermediates formed from the reaction of trialkyl phosphites with acetylenic esters were trapped by hydrazonoyl chlorides to yield dialkyl 4-(dialkoxyphosphoryl)-1-phenyl-3-aryl-4,5-dihydro-1H-pyrazole-4,5-dicarboxylates in good yields. This three-component synthesis of phosphorylated dihydro-1H-pyrazoles produces only one diasteromer.

    References and Notes

  • 1 Dewick PM. Medicinal Natural Products   2nd ed.:  John Wiley and Sons; Chichester: 2002. 
  • 2a Tietze LF. Steinmetz A. Balkenhohl F. Bioorg. Med. Chem. Lett.  1997,  71303 
  • 2b Brooking P. Doran A. Grimsey P. Hird NW. Maclachlan WS. Vimil M. Tetrahedron Lett.  1999,  40:  1405 
  • 2c Grosche P. Holtzel A. Walk TB. Trautwein AW. Jung G. Synthesis  1999,  1961 
  • 2d Watson SP. Wilson RD. Judd DB. Richards SA. Tetrahedron Lett.  1997,  38:  9065 
  • 3 Regan J. Breitfelder S. Cirillo P. Gilmore T. Graham AG. Hickey E. Klaus B. Madwed J. Moriak M. Moss N. Pargellis C. Paw S. Proto A. Swinamer A. Tang L. Torcellini C. J. Med. Chem.  2002,  45:  2994 
  • 4 Haufel J. Breitmaier E. Angew. Chem., Int. Ed. Engl.  1974,  13:  604 
  • 5 Wustrow DJ. Capiris T. Rubin R. Knobelsdorf JA. Akunne H. Davis MD. Mackenzic R. Pugsley TA. Zoski KT. Heffiner TG. Wise LD. Bioorg. Med. Chem. Lett.  1998,  8:  2067 
  • 6 Menozzi G. Mosti L. Fossa P. Mattioli F. Ghia M.
    J. Heterocycl. Chem.  1997,  34:  963 
  • 7 Soto L. Legros JP. Molla MC. Garcia J. Acta Crystallogr., Sect. B: Struct. Sci.  1987,  43:  834 
  • 8 Sakai K. Tomita Y. Ue T. Goshima K. Ohminato M. Tsubomura T. Matsumoto K. Ohmura K. Kawakami K. Inorg. Chim. Acta  2000,  64:  297 
  • 9 Ona GB. Moreno V. Font-Bardia M. Solans X. Perez JM. Alonso C. J. Inorg. Biochem.  1999,  75:  205 
  • 10 Elguero J. Comprehensive Heterocyclic Chemistry   Pergamon Press; Oxford: 1984. 
  • 11 Peruncheralathan S. Khan TA. Ila H. Jun Ja Paa H. J. Org. Chem.  2005,  70:  10030 
  • 12 Giacomelli G. Porcheddu A. Salaris M. Taddei M. Eur. J. Org. Chem.  2003,  537 
  • 13 Aggarwal VK. Vicente J. Bonnert RV. J. Org. Chem.  2003,  68:  5381 
  • 14 Wolkoff P. Can. J. Chem.  1975,  53:  1333 
  • 15 Huisgen R. Grashey R. Knupfer H. Kunz R. Chem Ber.  1964,  97:  1085 
  • 16 Yavari I. Khalili G. Helv. Chim. Acta  2010,  93:  277 
  • 18 Burnett AMN. Johnson CK. ORTEP III, Report ORNL-6895   Oak Ridge National Laboratory; Tennessee: 1996. 
17

General Procedure for the Synthesis of Compound 4 To a stirred solution of P(OR)3 (1 mmol) and hydrazonyl chloride 3 (1 mmol) in CH2Cl2 (5 mL) was added acetylenic ester 2 (1 mmol) at r.t. After completion of the reaction (10 h), as indicated by TLC (hexane-EtOAc, 5:1), the solvent was removed under reduced pressure, and the light cream residue was separated by silica gel (Merck 230400 mesh) column chromatography using hexane-EtOAc mixture as eluant to afford the pure products.
Selected Spectroscopic Data Compound 4a: colorless crystals, mp 115-117 ˚C. IR (KBr): 1741 (C=O), 1609, 1599, 1548, 1498, 1459, 1388, 1264 (P=O), 1234, 1172, 1054, 1051, 766, 693, 547 cm. ¹H NMR (500.1 MHz, CDCl3): δ = 1.12 (t, ³ J = 7.1 Hz, 3 H, Me), 1.20 (t, ³ J = 7.1 Hz, 3 H, Me), 3.61 (d, ³ J = 10.9 Hz, 3 H, POMe), 3.97 (d, ³ J = 10.8 Hz, 3 H, POMe), 4.06-4.11 (m, 1 H, OCH2), 4.15 (q, ³ J = 7.1 Hz, 2 H, OCH2), 4.22-4.28 (m, 1 H, OCH2), 5.43 (d, ³ J = 25.4 Hz, 1 H, CH), 6.93 (t, ³ J = 7.3 Hz, 1 H, CH), 7.11 (d, ³ J = 8.3 Hz, 2 H, 2 × CH), 7.27-7.33 (m, 3 H, 3 × CH), 7.35-7.37 (m, 2 H, 2 × CH), 8.01 (d, ³ J = 7.4 Hz, 2 H, 2 × CH). ³¹P NMR (202 MHz, CDCl3): δ = 18.5. ¹³C NMR (125.6 MHz, CDCl3): δ = 13.5 (Me), 13.8 (Me), 54.2 (d, ² J = 6.9 Hz, POMe), 55.1 (d, ² J = 6.0 Hz, POMe), 62.0 (OCH2), 62.8 (OCH2), 67.5 (d, ¹ J = 141.9 Hz, C), 69.8 (d, ³ J = 4.0 Hz, CH), 113.5 (2 × CH), 120.5 (CH), 127.2 (2 × CH), 128.0 (2 × CH), 128.6 (CH), 129.0 (2 × CH), 131.0 (C), 142.3 (C), 143.2 (C), 166.3 (C=O), 167.3 (d, ³ J = 17.0 Hz, C=O). MS (EI): m/z = 474 (5) [M+], 429 (15), 77 (45), 71 (65), 57 (100), 43 (80). Anal. Calcd for C23H27N2O7P (474.44): C, 58.23; H, 5.74; N, 5.90. Found: C, 58.47; H, 5.42; N, 5.71. Compound 4b: yellow oil, yield 0.42 g (88%). IR (KBr): 1744 (C=O), 1596, 1498, 1432, 1383, 1256 (P=O), 1204, 1161, 1042, 1016, 971, 818, 745, 547 cm. ¹H NMR (500.1 MHz, CDCl3): δ = 1.02 (t, ³ J = 7.0 Hz, 3 H, Me), 1.34 (d, ³ J = 7.1 Hz, 3 H, Me), 2.35 (s, 3 H, Me), 3.67-3.70 (m, 6 H, 2 OMe), 3.93-4.03 (m, 2 H, POCH2), 4.31-4.36 (m, 2 H, POCH2), 5.42 (d, ³ J = 25.1 Hz, 1 H, CH), 6.90 (t, ³ J = 7.3 Hz, 1 H, CH), 7.07 (d, ³ J = 8.0 Hz, 2 H, 2 × CH), 7.15 (d, ³ J = 8.1 Hz, 2 H, 2 × CH), 7.27-7.30 (m, 2 H, 2 × CH), 7.80 (d, ³ J = 8.2 Hz, 2 H, 2 × CH). ³¹P NMR (202 MHz, CDCl3): δ = 18.6. ¹³C NMR (125.6 MHz, CDCl3): δ = 15.8 (d, ² J = 6.3 Hz, Me), 16.3 (d, ² J = 5.7 Hz, Me), 21.3 (Me), 52.8 (OMe), 53.3 (OMe), 63.8 (d, ² J = 6.9 Hz, POCH2), 64.7 (d, ² J = 6.2 Hz, POCH2), 67.6 (d, ¹ J = 141.4 Hz, C), 69.7 (d, ² J = 4.0 Hz, CH), 113.1 (2 × CH), 120.2 (CH), 127.1 (2 × CH), 128.1 (C), 128.8 (2 × CH), 129.1 (2 × CH), 138.8 (C), 142.4 (d, ³ J = 6.4 Hz, C), 143.3 (C), 167.1 (C=O), 168.2 (d, ³ J = 16.6 Hz, C=O). MS (EI): m/z = 488 (5) [M+], 457 (10), 77 (30), 57 (100), 43 (70). Anal. Calcd for C24H29N2O7P (488.47): C, 59.01; H, 5.98; N, 5.73. Found: C, 59.45; H, 5.41; N, 5.47.
Compound 4c: yellow oil, yield: 0.43 g (90%). IR (KBr): 1746 (C=O), 1597, 1572, 1497, 1433, 1384, 1256 (P=O), 1162, 1043, 1016, 972, 829, 745 cm. ¹H NMR (500.1 MHz, CDCl3): δ = 1.03 (t, ³ J = 7.0 Hz, 3 H, Me), 1.35 (t, ³ J = 7.0 Hz, 3 H, Me), 3.68-3.70 (m, 6 H, 2 OMe), 3.96-4.02 (m,
2 H, POCH2), 4.32-4.37 (m, 2 H, POCH2), 5.41-5.43 (m, ³ J = 25.1 Hz, 1 H, CH), 6.92 (t, ³ J = 7.2 Hz, 1 H, CH), 7.08 (d, ³ J = 8.0 Hz, 2 H, 2 × CH), 7.26-7.32 (m, 4 H, 4 × CH), 7.94 (d, ³ J = 8.6 Hz, 2 H, 2 × CH). ³¹P NMR (202 MHz, CDCl3): δ = 18.7. ¹³C NMR (125.6 MHz, CDCl3): δ = 15.8 (d, ² J = 6.1 Hz, Me), 16.3 (Me), 21.2 (d, ² J = 5.7 Hz, Me), 52.9 (OMe), 53.4 (OMe), 63.8 (d, ² J = 7.2 Hz, POCH2), 64.9 (d, ² J = 6.2 Hz, POCH2), 67.5 (d, ¹ J = 140.5 Hz, C), 69.8 (d, ³ J = 3.6 Hz, CH), 113.3 (2 × CH), 120.7 (CH), 128.2 (2 × CH), 128.4 (2 × CH), 129.1 (2 × CH), 129.5 (C), 134.5 (C), 141.3 (C), 142.9 (C), 166.8 (C=O), 168.1 (d, ³ J = 16.9 Hz, C=O). MS (EI): m/z = 508 (5) [M+], 447 (15), 77 (45), 57 (100), 43 (75). Anal. Calcd for C23H26N2O7PCl (508.88): C, 54.28; H, 5.15; N, 5.50. Found: C, 54.71; H, 5.39; N, 5.21.

19

A referee of this paper suggested a mechanistic alternative, involving the 1,3-dipolar cycloaddition of a nitrilimine (formed by extrusion of HCl from the hydrazonoyl chlorides) to the P-substituted fumarate (product of the reaction of HCl, the phosphite, and the acetylenedi-carboxylate). Although we are unable to rule out this possibility, we prefer the mechanism shown in Scheme  [²] .