References and Notes
1a
Koch SSC.
Chamberlin AR. In Studies
in Natural Products Chemistry
Vol. 16:
.
Elsevier;
Amsterdam:
1995.
p.687-725
1b
Friedrichsen W. In Comprehensive Heterocyclic
Chemistry II
Vol. 2:
Bird CW.
Pergamon Press;
Oxford:
1996.
p.351
1c
Rao
YS.
Chem. Rev.
1976,
76:
625
1d
Haffmann HMR.
Rabe J.
Angew.
Chem., Int. Ed. Engl.
1985,
24:
94
1e
Mulzer J.
Salimi N.
Hartl H.
Tetrahedron:
Asymmetry
1993,
4:
457
1f
Schmitz WD.
Messerschmidt NB.
Romo D.
J. Org. Chem.
1998,
63:
2058
1g
Maier MS.
Marimon DIG.
Stortz C.-A.
Alder MJ.
J.
Nat. Prod.
1999,
62:
1565
1h
Hislop J.-A.
Hunt MB.
Fielder S.
Rowan DD.
J. Agric. Food Chem.
2004,
52:
7075
1i
Frediani P.
Rosi L.
Frediani M.
Bartolucci C.
Bambagiotti-Alberti M.
J.
Agric. Food Chem.
2007,
55:
3877
1j
Schlutt B.
Moran N.
Schieberle P.
Hofmann T.
J. Agric. Food Chem.
2007,
55:
9634
1k
Pertino MW.
Theoduloz C.
Rodriguez JA.
Yanez T.
Lazo V.
Schmeda-Hirschmann G.
J.
Nat. Prod.
2010,
73:
639
2
Lambert JD.
Rice JE.
Hong J.
Hou Z.
Yang CS.
Bioorg.
Med. Chem. Lett.
2005,
15:
873
3a
Harchen C.
Bruchner R.
Angew.
Chem. Int. Ed.
1997,
36:
2750
3b
Drioli S.
Felluga F.
Forzato C.
Nitti P.
Pitacco G.
Valentin E.
J. Org. Chem.
1998,
63:
2385
3c
de March P.
Figueredo M.
Font J.
Raya J.
Org. Lett.
2000,
2:
163
3d
Delhaye L.
Merschaert A.
Diker K.
Houpis IN.
Synthesis
2006,
1437
4a
Gutierrez JLG.
Jimenez-Cruz F.
Espinosa NR.
Tetrahedron
Lett.
2005,
46:
803
4b
Burstein C.
Tschan S.
Xie X.
Glorius F.
Synthesis
2006,
2418
4c
Tiecco M.
Testaferri L.
Temperini A.
Terlizzi R.
Bagnoli L.
Marini F.
Santi C.
Synlett
2006,
587
4d
Vitale M.
Prestat G.
Lopes D.
Madec D.
Poli G.
Synlett
2006,
2231
4e
Cho CS.
Shim HS.
Tetrahedron Lett.
2006,
47:
3835
4f
Li Z.
Gao Y.
Jiao Z.
Wu N.
Wang DZ.
Yang Z.
Org. Lett.
2008,
10:
5163
4g
Park HS.
Kwon DW.
Lee K.
Kim YH.
Tetrahedron
Lett.
2008,
49:
1616
4h
Antoniotti S.
Dunach E.
Tetrahedron Lett.
2009,
50:
2536
4i
Gooßen LJ.
Ohlmann DM.
Dierker M.
Green Chem.
2010,
12:
197
4j
Dias LC.
de Castro IBD.
Steil LJ.
Augusto T.
Tetrahedron
Lett.
2006,
47:
213
4k
Olejniczak T.
Mironowicz A.
Wawrzenczyk C.
Bioorg.
Chem.
2003,
31:
199
5a
Tietze LF.
Beifuss U.
Angew.
Chem., Int. Ed. Engl.
1993,
32:
131
5b
Enders D.
Grndal C.
Huttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
5c
Nicolaou KC.
Chen JS.
Chem.
Soc. Rev.
2009,
38:
2993
5d
Morten
CJ.
Byers JA.
Van
Dyke AR.
Vilotijevic I.
Jamison TF.
Chem. Soc. Rev.
2009,
38:
3175
6a
Domino Reactions in Organic Synthesis
Tietze LF.
Brasche G.
Gericke KM.
Wiley-VCH;
Weinheim:
2006.
6b
Fustero S.
Jimenez D.
Sanchez-Rosello M.
del Pozo C.
J. Am. Chem. Soc.
2007,
129:
6700
6c
Bi
H.-P.
Liu X.-Y.
Gou F.-R.
Guo L.-N.
Duan X.-H.
Shu X.-Z.
Liang Y.-M.
Angew.
Chem. Int. Ed.
2007,
46:
7068
6d
Rolfe A.
Young K.
Hanson PR.
Eur.
J. Org. Chem.
2008,
31:
5254
7a
Kozytska MV.
Dudley GB.
Chem. Commun.
2005,
3047
7b
Bontemps S.
Gornitzka H.
Bouhadir G.
Miqueu K.
Bourissou D.
Angew.
Chem. Int. Ed.
2006,
45:
1611
7c
Bontemps S.
Bouhadir G.
Miqueu K.
Bourissou D.
J. Am. Chem. Soc.
2006,
128:
12056
7d
Tejedor D.
Mendez-Abt G.
Gonzalez-Platas J.
Ramirez MA.
Garca-Tellado F.
Chem.
Commun.
2009,
2368
8a
Nakamura H.
Shim J.-G.
Yamamoto Y.
J. Am. Chem. Soc.
1997,
119:
8113
8b
Nakamura H.
Aoyagi K.
Shim J.-G.
Yamamoto Y.
J. Am. Chem. Soc.
2001,
123:
372
8c
Hili R.
Yudin AK.
Angew. Chem. Int. Ed.
2008,
47:
4188
8d
Baktharaman S.
Hili R.
Yudin AK.
Aldrichimica
Acta
2008,
41:
109
8e
Kimura M.
Tamaki T.
Nakata M.
Tohyama K.
Tamaru Y.
Angew.
Chem. Int. Ed.
2008,
120:
5887
8f
Hili R.
Yudin AK.
J. Am. Chem. Soc.
2009,
131:
16404
9a
Corey EJ.
Russey WE.
Ortiz de Montellano PR.
J. Am. Chem. Soc.
1966,
88:
4750
9b
van Tamelen EE.
Willett JD.
Clayton RB.
Lord KE.
J.
Am. Chem. Soc.
1966,
88:
4752
9c
Neighbors JD.
Beutler JA.
Wiemer DF.
J. Org. Chem.
2005,
70:
925
9d
Vilotijevic I.
Jamison TF.
Angew. Chem. Int.
Ed.
2009,
48:
5250
9e
Topczewski JJ.
Callahan MP.
Neighbors JD.
Wiemer DF.
J.
Am. Chem. Soc.
2009,
131:
14630
10a
Samuel S.-MC.
Gordon WK.
J. Chem. Soc., Perkin Trans. 1
1991,
3225
10b
Ravelo JL.
Radriguez CM.
Martin VS.
J. Organomet. Chem.
2006,
691:
5326
11a
Chowdhury S.
Mohan RS.
Scott JL.
Tetrahedron
2007,
63:
2363
11b
Martins MAP.
Frizzo CP.
Moreira DN.
Zanatta N.
Bonacorso HG.
Chem. Rev.
2008,
108:
2015
11c
Prechtl MHG.
Scholten JD.
Nuto BAD.
Dupont J.
Curr.
Org. Chem.
2009,
13:
1705
11d
Sureshkumar M.
Lee C.-K.
J. Mol. Catal. B: Enzym.
2009,
60:
1
11e
Olivier-Bourbigou H.
Magna L.
Morvan D.
Appl.
Catal., A
2010,
373:
1
11f
Giernoth R.
Angew. Chem.
Int. Ed.
2010,
49:
2834
12a
Ionic Liquids in Synthesis
Wasserscheid P.
Welton T.
Wiley-VCH;
Weinheim:
2008.
12b
Calo V.
Nacci A.
Monopoli A.
Cotugno P.
Angew. Chem. Int. Ed.
2009,
48:
6101
12c
Gong K.
Wang H.-L.
Luo J.
Liu Z.-L.
J. Heterocycl. Chem.
2009,
46:
1145
12d
Yavari I.
Kowsari E.
Mol. Diversity
2009,
13:
519
12e
Yadav LDS.
.
Srivastava VP.
Tetrahedron Lett.
2010,
51:
739
13a
Yadav LDS.
Patel R.
Rai VK.
Srivastava VP.
Tetrahedron Lett.
2007,
48:
7793
13b
Yadav LDS.
Patel R.
Srivastava VP.
Synlett
2008,
583
13c
Yadav LDS.
Singh S.
Rai VK.
Tetrahedron Lett.
2009,
50:
2208
13d
Yadav LDS.
Singh S.
Rai VK.
Green Chem.
2009,
11:
878
13e
Yadav LDS.
Kapoor R.
.
Synlett
2009,
1055
13f
Yadav LDS.
Rai VK.
Singh S.
Singh P.
Tetrahedron
Lett.
2010,
51:
1662
14
Yadav LDS.
Yadav S.
Rai VK.
Tetrahedron
2005,
61:
10013
15
General Procedure
for the Synthesis of α-Mercapto-γ-lactones 4
To
a stirred solution of 2-methyl-2-phenyl-1,3-oxathiolan-5-one (2, 1 mmol) in [Bmim]OH-H2O
(0.5-1 mL, 4:1), epoxide 1 (1
mmol) was added dropwise and stirred at r.t. for 30 min, then the
reaction mixture was stirred at 50 ˚C for 6-15
h (Table
[¹]
). After
completion of reaction (monitored by TLC), the reaction mixture
was cooled to r.t., diluted with H2O (5 mL), and extracted
with EtOAc (3 × 5 mL), dried over anhyd
Na2SO4, filtered, and evaporated to dryness.
A
mixture of the crude product 4 and acetophenone
thus obtained was subjected to silica gel column chromatography using
EtOAc-n-hexane as eluent to
afford an analytically pure sample of 4 and
acetophenone, which was recycled to 2.¹4 After
isolation of the product, the remaining aqueous layer containing
the ionic liquid was washed with Et2O (2 × 5
mL) to remove any organic impurity, dried under vacuum at 90 ˚C
to afford [Bmim]OH, which was used in subsequent
runs without further purification.
Physical
Data of Representative CompoundsCompound 4a (
cis
/
trans
= 60:40)
cis: IR (film): νmax = 2995,
2876, 2554, 1765, 1607, 1583, 1455 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25
(1 H, m), 2.39 (1 H, ddd, J = 13.2,
6.8, 6.7 Hz), 3.85 (1 H, dd, J = 7.7,
6.7 Hz), 5.28 (1 H, dd, J = 6.9,
6.8 Hz), 7.21-7.32 (m, 5 Harom). ¹³C
NMR (100 MHz, CDCl3-TMS): δ = 41.1,
46.2, 80.1, 127.1, 128.8, 129.1, 140.1, 178.4. MS (EI): m/z = 194 [M+].
Anal. Calcd for C10H10O2S: C, 61.83; H,
5.19. Found: C, 62.2; H, 5.02.
trans:
IR (film): νmax = 2993, 2876, 2558,
1767, 1609, 1582, 1453 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20
(1 H, m), 2.46 (1 H, ddd, J = 13.2,
6.8, 6.9 Hz), 3.88 (1 H, dd, J = 7.4,
6.9 Hz), 5.05 (1 H, dd, J = 10.3,
6.8 Hz), 7.23-7.36 (m, 5Harom).
Compound 4c
(
cis
/
trans
= 67:33)
cis: IR (film): νmax = 2998,
2875, 2554, 1768, 1605, 1585, 1456 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25
(1 H, m), 2.39 (1 H, ddd, J = 13.2,
6.8, 6.7 Hz), 3.83 (1 H, dd, J = 7.7,
6.7 Hz), 5.29 (1 H, dd, J = 6.9,
6.8 Hz), 7.21-7.34 (m, 2 Harom,), 7.58-7.61
(m, 2 Harom). ¹³C NMR (100
MHz, CDCl3-TMS): δ = 41.6,
46.9, 81.1, 129.6, 130.2, 132.3, 143.5, 178.5. MS (EI): m/z = 228 [M+],
230 [M + 2+]. Anal.
Calcd for C10H9ClO2S: C, 52.52;
H, 3.97. Found: C, 52.15; H, 4.29.
trans:
IR (film): νmax = 3001, 2876, 2552,
1770, 1609, 1580, 1457 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20
(1 H, m), 2.46 (1 H, ddd, J = 13.2,
6.8, 6.9 Hz), 3.86 (1 H, dd, J = 7.4,
6.9 Hz), 5.07 (1 H, dd, J = 10.3,
6.8 Hz), 7.23-7.36 (m, 2 Harom), 7.57-7.62
(m, 2 Harom).
16
Isolation of 3a
and 3c and their Conversion into the Corresponding α-Mercapto-γ-lactones
4a and 4c
The procedure followed was the same as described
above for the synthesis of 4 except that
the stirring time in this case was only 25-30 min at r.t.
Purified by silica gel chromatography using EtOAc-n-hexane as eluent to afford an analytically pure
sample of 3a and 3c.
Finally, the intermediate alcohols 3a and 3c (1 mmol) were quantitatively converted
into the corresponding γ-lactones 4a and 4b by stirring at 50 ˚C
in [Bmim]OH-H2O (4:1) for
6.5 h.
Physical Data of Intermediate
Alcohols 3a and 3cCompound 3a (Diastereomeric Mixture = 60:40)
Major:
IR (film): νmax = 3435, 2965, 2878,
1775, 1605, 1581, 1456 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.18
(3 H, s), 2.13-2.17 (2 H, m), 3.99 (1 H, dd, J = 12.0, 7.8
Hz), 4.91 (1 H, dd, J = 7.6,
5.7 Hz), 7.21-7.36 (m, 10Harom). ¹³C
NMR (100 MHz; CDCl3-TMS): δ = 20.8, 37.2,
44.7, 77.2, 98.7, 127.1, 127.8, 128.4, 128.8, 129.1, 129.5, 139.8,
141.1, 177.2. MS (EI): m/z = 314 [M+].
Anal. Calcd for C18H18O3S: C, 68.76;
H, 5.77. Found: C, 68.98; H, 5.40.
Minor: ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19
(3 H, s), 2.15-2.20 (2 H, m), 3.89 (1 H, t, J = 2.2 Hz),
4.98 (1 H, dd, J = 7.8,
5.7 Hz), 7.21-7.34 (m, 10 Harom).
Compound 3c (Diasteriomeric Mixture = 67:33)
Major:
IR (film): νmax = 3440, 2985, 2876,
1772, 1607, 1584, 1457 cm-¹. ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.21
(3 H, s), 2.16-2.20 (2 H, m), 3.92 (1 H, dd, J = 12.1, 7.8
Hz), 4.95 (1 H, dd, J = 7.5,
5.7 Hz), 7.21-7.52 (m, 7 Harom), 7.70-7.90
(m, 2 Harom). ¹³C NMR (100
MHz, CDCl3-TMS): δ = 21.7,
37.4, 44.9, 77.3, 98.6, 127.7, 128.9, 129.2, 129.8, 130.1, 132.2,
139.7, 142.5, 177.3. MS (EI): m/z = 348 [M+],
350 [M + 2+]. Anal.
Calcd for C18H17ClO3S: C, 61.97; H,
4.91. Found: C, 62.20; H, 5.28.
Minor: ¹H
NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19
(3 H, s), 2.17-2.22 (2 H, m), 3.89 (1 H, t, J = 2.3 Hz),
4.98 (1 H, dd, J = 7.8,
5.6 Hz), 7.22-7.54 (m, 7 Harom), 7.72 (m, 2 Harom).
17
Brace NO.
J.
Fluorine Chem.
2003,
123:
237