RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258301
Lithium Naphthalenide-Induced Reductive Alkylation and Addition of Aryl- and Heteroaryl- Substituted Dialkylacetonitriles
Publikationsverlauf
Publikationsdatum:
14. Oktober 2010 (online)
Abstract
Lithium naphthalenide (LN)-induced reductive alkylation/addition reactions of aryl-, pyridyl-, and 2-thienyl-substituted dialkylacetonitriles have been investigated. Upon treatment with LN in THF at -40 ˚C, both aryl and pyridyl precursors could undergo the reductive decyanation smoothly, and the in situ generated carbanions could be readily trapped by alkyl halides, ketones, aldehydes, or even oxygen to afford a wide range of functionalized aromatic derivatives bearing a newly established quaternary carbon. To effect the desired reductive alkylation of 2-thienyldialkylacetonitriles, a much lower temperature such as -100 ˚C was required. Also with these substrates, an interesting ring-opening/S-alkylation process was observed when the reductive alkylation were performed at -78 ˚C to give 1-alkylsulfanyl-1,3,4-trienes. A mechanistic discussion is given for this observation.
Key words
reductive alkylation - reductive addition - reductive decyanation - nitriles - lithium naphthalenide - aryl derivatives - heteroaryl derivatives - substituted 1,3,4-trienes
- 1
House HO. In Modern Synthetic Reactions 2nd ed.: W. A. Benjamin Inc.; New York: 1972. p.492-628 - 2
Schaefer FC. In The Chemistry of the Cyano GroupRappoport Z. Wiley-Interscience; London: 1970. p.239-305 - 3
Mattalia J.-M.Marchi-Delapierre C.Hazimeh H.Chanon M. ARKIVOC 2006, (iv): 90 - For recent examples, see:
-
4a
Morin MD.Rychnovsky SD. Org. Lett. 2005, 7: 2051 -
4b
Burke YAM.Kotani SJ.Ziller W.Rychnovsky SD. Org. Lett. 2010, 12: 72 -
5a
Shia KS.Chang NY.Yip J.Liu HJ. Tetrahedron Lett. 1997, 38: 7713 -
5b
Liu HJ.Zhu JL.Shia KS. Tetrahedron Lett. 1998, 39: 4183 -
5c
Zhu JL.Shia KS.Liu HJ. Chem. Commun. 2000, 1599 -
5d
Liu HJ.Yip J. Synlett 2000, 1119 -
5e
Liu HJ.Ly TW.Tai CL.Wu JD.Liang JK.Guo JC.Tseng NW.Shia KS. Tetrahedron 2003, 59: 1209 -
5f
Wu JD.Shia KS.Liu HJ. Tetrahedron Lett. 2001, 42: 4207 -
5g
Liu HJ.Ho YL.Wu JD.Shia KS. Synlett 2001, 1805 -
5h
Tsia TY.Shia KS.Liu HJ. Synlett 2003, 97 - For our recent publications in this area, see:
-
5i
Ko YC.Zhu JL. Synthesis 2007, 3659 -
5j
Amancha PK.Lai YC.Chen IC.Liu HJ.Zhu JL. Tetrahedron 2010, 66: 871 - 6
Coates RM.Shah SK.Mason RW. J. Am. Chem. Soc. 1982, 104: 2198 - 7
March J. In Advanced Organic Chemistry 4th ed.: Wiley-Interscience; New York: 1992. p.26-74 - For example: see:
-
8a
Ciufolini MA.Shen YC. J. Org. Chem. 1997, 62: 3804 -
8b
Verhoest PR.Chapin DS.Corman M.Fonseca K.Harms JF.Hou X.Marr ES.Menniti FS.Nelson F.O’Connor R.Pandit J.Proulx-LaFrance C.Schmidt AW.Schmidt CJ.Suiciak JA.Liras S. J. Med. Chem. 2009, 52: 5188 -
8c
DeLorbe JE.Lotz MD.Martin SF. Org. Lett. 2010, 12: 1576 - For example, see:
-
9a
Osuch L. J. Am. Chem. Soc. 1956, 78: 1723 -
9b
Sashida H.Ito K.Tsuchiya T. Chem. Pharm. Bull. 1995, 43: 19 -
9c
Smith AC.Macartney DH.
J. Org. Chem. 1998, 63: 9243 -
9d
Koning B.Buter J.Hulst R.Stroetinga R.Kellogg R. Eur. J. Org. Chem. 2000, 15: 2735 -
9e
Gomez I.Alonso E.Ramon DJ.Yus M. Tetrahedron 2000, 56: 4043 -
9f
Schneider U.Kobayashi S. Angew. Chem. Int. Ed. 2007, 119: 5909 - 10
Amano T.Yoshikawa K.Ogawa T.Sano T.Ohuchi Y. Chem. Pharm. Bull. 1986, 34: 4653 - 11 For the preparation of a solution
of LN, see:
Liu HJ.Yip J.Shia KS. Tetrahedron Lett. 1997, 38: 2253 -
12a
Compounds 3a-c, 3j, 3o, 3p, 3r, 3t, 3v, and 3w are known. For some reported spectral data:
-
12b
3a:
Tietze L.Kinzel T.Wolfram T. Chem. Eur. J. 2009, 25: 6199 -
12c
3b:
de Kimpe N. Bull. Soc. Chim. Belg. 1979, 88: 719 -
12d
3v:
Liu Q.Duan H.Luo XC.Tang Y.Li G.Huang R.Lei A. Adv. Synth. Catal. 2008, 350: 1349 -
12e
3w:
Yamamoto Y.Kawano S.Maekawa H.Nishiguchi I. Synlett 2004, 30 - 14
Takanishi K.Urabe H.Kuwajima I. Tetrahedron Lett. 1987, 28: 2281
References
The stereogeometry of 5b-d remains to be determined.