Subscribe to RSS
DOI: 10.1055/s-0030-1258400
Synthetic GFP Chromophore and Control of Excited-State Proton Transfer in DNA: An Alternative Concept for Fluorescent DNA Labels with Large Apparent Stokes’ Shifts
Publication History
Publication Date:
10 January 2011 (online)
Abstract
Synthetic GFP-like chromophores bearing an ortho-phenol group instead of the para-phenol group of natural GFP can mimic the hydrogen bonding network in the protein by an intramolecular hydrogen bond to the imidazolone group. This hydrogen bond influences the excited state of the model by proton transfer (ESPT). The corresponding GFP model chromophore 1 was synthesized with an additional azide functionality that can be used to ligate it to acetylene-modified biomolecules by Cu(I)-catalyzed cycloaddition. The chromophore 1 was incorporated as a synthetic modification into oligonucleotides using a postsynthetic methodology and characterized within the DNA environment by optical spectroscopy. In order to elucidate the effect of DNA on ESPT a second GFP chromophore 2 was synthesized carrying a methyl group that prevents ESPT processes. It became evident that DNA is able to provide an artificial environment for the GFP chromophore that controls the photophysical property in such a way that nearly solely the ESPT-driven, red-shifted fluorescence is occurring. The apparent Stokes’ shift is larger than 200 nm (9000 cm-¹). Moreover, the comparison with the methylated chromophore 2 in DNA elucidates that DNA increases the fluorescence intensity of both GFP models presumably by restricting the conformational flexibility. Although the observable quantum yields are too low to consider the fluorophore for any bioanalytical application, the combination of both effects, red-shifted ESPT-controlled fluorescence with large apparent Stokes’ shifts and increase of intensity by restricting of internal conversion, provides an important concept for the design of fluorescent labels for DNA and RNA.
Key words
cyanine - fluorescence - green fluorescent protein - oligonucleotide - proton transfer
- Supporting Information for this article is available online:
- Supporting Information
-
2a
Shimomura O.Johnson FH.Saiga Y. J. Cell. Comp. Physiol. 1962, 59: 223 -
2b
Shimomura O. Angew. Chem. Int. Ed. 2009, 48: 5590 -
3a
Chalfie M.Tu Y.Euskirchen G.Ward WW.Prasher DC. Science 1994, 263: 802 -
3b
Chalfie M. Angew. Chem. Int. Ed. 2009, 48: 5603 -
4a
Heim R.Prasher DC.Tsien RY. Proc. Natl. Acad. Sci. USA 1994, 91: 12501 -
4b
Tsien RY. Angew. Chem. Int. Ed. 2009, 48: 5612 - 5 See review:
Zimmer M. Chem. Rev. 2002, 102: 759 - See reviews:
-
6a
Remington SJ. Curr. Opin. Struct. Biol. 2006, 16: 714 -
6b
Zhang J.Campbell RE.Ting AY.Tsien RY. Nature Rev. Mol. Cell Biol. 2002, 3: 906 -
7a
Prasher DC.Eckenrode VK.Ward WW.Prendergast FG.Cormier MJ. Gene 1992, 111: 229 -
7b
Cody CW.Prasher DC.Westler WM.Prendergast FG.Ward WW. Biochemistry 1993, 32: 1212 - 8
Kummer AD.Kompa C.Lossau H.Pöllinger-Dammer F.Michel-Beyerle ME.Silva CM.Bylina EJ.Coleman WJ.Yang MM.Youvan DC. Chem. Phys. 1998, 237: 183 -
9a
Chattoraj M.King BA.Bublitz GU.Boxer SG. Proc. Natl. Acad. Sci. USA 1996, 93: 8362 -
9b
Brejc K.Sixma TK.Kitts PA.Kain SR.Tsien RY.Ormö M.Remington SJ. Proc. Natl. Acad. Sci. USA 1997, 94: 2306 -
9c
Palm GJ.Zdanov A.Gaitanaris GA.Stauber R.Pavlakis GN. Nat. Struct. Biol. 1997, 4: 361 - 10
Niwa H.Inouye S.Hirano T.Matsuno T.Kojima S.Kubota M.Ohashi M.Tsuji FI. Proc. Natl. Acad. Sci. USA 1996, 93: 13617 - 11
Ai H.-W.Shaner NC.Cheng Z.Tsien RY.Campbell RE. Biochemistry 2007, 46: 5904 - 12
Wu L.Burgess K. J. Am. Chem. Soc. 2008, 130: 4089 - 13
Kojima S.Ohkawa H.Hirano T.Maki S.Niwa H.Ohashi M.Inouye S.Tsuji FI. Tetrahedron Lett. 1998, 39: 5239 - 14
Chen K.-Y.Cheng Y.-M.Lai C.-H.Hsu C.-C.Ho M.-L.Lee G.-H.Chou P.-T. J. Am. Chem. Soc. 2007, 129: 4534 - 15
Kang J.Zhao G.Xu J.Yang W. Chem. Commun. 2010, 46: 2868 - 16
Prüger B.Bach T. Synthesis 2007, 1103 - 17
Baldrige A.Samanta SR.Jayaraj N.Ramamurthy V.Tolbert LM. J. Am. Chem. Soc. 2010, 132: 1498 - 18
Stafforst T.Diederichsen U. Eur. J. Org. Chem. 2007, 899 - 19
Ehrenschwender T.Varga BR.Kele P.Wagenknecht H.-W. Chem. Asian J. 2010, 5: 1761 - 20 See review:
Weisbrod SH.Marx A. Chem. Commun. 2008, 5675 - 21
Huisgen R. Angew. Chem. Int. Ed. 1963, 2: 565 -
22a
Lewis WG.Green LG.Grynszpan F.Radic Z.Carlier PR.Taylor P.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 1053 -
22b
Tornøe CW.Christensen C.Meldal M. J. Org. Chem. 2002, 67: 3057 - See reviews:
-
23a
Gramlich PM.Wirges CT.Manetto A.Carell T. Angew. Chem. Int. Ed. 2008, 47: 8350 -
23b
El-Sagheer AH.Brown T. Chem. Soc. Rev. 2010, 39: 1388 - 24
Berndl S.Herzig N.Kele P.Lachmann D.Li X.Wolfbeis O.Wagenknecht H.-A. Bioconjugate Chem. 2009, 20: 558 - 25
Grøtli M.Douglas M.Eritja R.Sproat BS. Tetrahedron 1998, 54: 5899 - 26
Bailly F.Maurin C.Teissier E.Vezin H.Cotelle P. Bioorg. Med. Chem. 2004, 12: 5611 - 27
Shafi PM.Basheer PAM.Jirovetz L. Asian J. Chem. 2006, 18: 3188 - 28 See review:
Appel R. Angew. Chem. Int. Ed. 1975, 14: 801 - 29 See review:
Bräse S.Gil C.Knepper K.Zimmermann V. Angew. Chem. Int. Ed. 2005, 44: 5188 - 30 See review:
Benner SA. Acc. Chem. Res. 2004, 37: 784
References
New address: Karlsruhe Institute of Technology, Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; Fax: +49(721)60844825; e-mail: Wagenknecht@kit.edu.