Abstract
The practical and efficient synthesis of d -erythro -sphingosine from commercially
available d -ribo -phytosphingosine
is described. An important feature of this synthesis is
the selective transformation of the 3,4-vicinal diol of phytosphingosine
into the characteristic E -allylic alcohol
of sphingosine via a cyclic sulfate intermediate that contains a
non-nucleophilic trifluoroacetamide protecting group.
Key words
cyclic sulfates - protecting groups - reactive
intermediates - sphingolipids - synthetic methods
References
<A NAME="RF09111SS-1">1 </A>
Merrill AH.
Sandhoff K.
Sphingolipids: Metabolism and Cell Signaling in Biochemistry of Lipids, Lipoprotein, and Membranes
Vance DE.
Vance JE.
Elsevier;
New
York:
2002.
p.373
<A NAME="RF09111SS-2A">2a </A>
Muralidhar P.
Radhika P.
Krishna N.
Rao DV.
Rao ChB.
Nat. Prod. Sci.
2003,
9:
117
<A NAME="RF09111SS-2B">2b </A>
Howell AR.
Ndakala AJ.
Curr.
Org. Chem.
2002,
6:
365
<A NAME="RF09111SS-3">3 </A>
Bae J.-H.
Sohn J.-H.
Park C.-S.
Rhee J.-S.
Choi E.-S.
Appl.
Environ. Microbiol.
2003,
69:
812
<A NAME="RF09111SS-4">4 </A>
Phytosphingosine from fermentation
can be purchased at low cost direct from suppliers such as Cosmoferm
B. V. and Doosan Biotech BU.
For selected publications on recent
syntheses of d -erythro -sphingosine
with citations, see:
<A NAME="RF09111SS-5A">5a </A>
Llaveria J.
Díaz Y.
Matheu MI.
Castillón S.
Org. Lett.
2009,
11:
205
<A NAME="RF09111SS-5B">5b </A>
Morales-Serna JA.
Díaz Y.
Matheu MI.
Castillón S.
Synthesis
2009,
710
<A NAME="RF09111SS-5C">5c </A>
Sridhar R.
Srinivas B.
Rama Rao K.
Tetrahedron
2009,
65:
10701
<A NAME="RF09111SS-5D">5d </A>
Abraham E.
Davies SG.
Millican NL.
Nicholson RL.
Roberts PM.
Smith AD.
Org.
Biomol. Chem.
2008,
6:
1655
<A NAME="RF09111SS-5E">5e </A>
Yang H.
Liebeskind LS.
Org. Lett.
2007,
9:
2993
<A NAME="RF09111SS-5F">5f </A>
Merino P.
Kimenez P.
Tejero T.
J.
Org. Chem.
2006,
71:
4685
<A NAME="RF09111SS-5G">5g </A>
Disadee W.
Ishikawa T.
J. Org. Chem.
2005,
70:
9399
<A NAME="RF09111SS-5H">5h </A>
Chaudhari VD.
Kumar KSA.
Dhavale DD.
Org. Lett.
2005,
7:
5805
<A NAME="RF09111SS-5I">5i </A>
Lu X.
Bittman R.
Tetrahedron Lett.
2005,
46:
1873
<A NAME="RF09111SS-6A">6a </A>
Ha H.-J.
Yoon D.-H.
Kang L.-S.
Hong MC.
Lee WK.
Bull. Korean Chem. Soc.
2009,
30:
535
<A NAME="RF09111SS-6B">6b </A>
van den Berg RJBHN.
Korevaar CGN.
Overkleeft HS.
van der Marel GA.
Van Boom JH.
J.
Org. Chem.
2004,
69:
5699
<A NAME="RF09111SS-6C">6c </A>
van den Berg RJBHN.
Korevaar CGN.
van der Marel GA.
Overkleeft HS.
Van Boom JH.
Tetrahedron
Lett.
2002,
43:
8409; See also
ref. 7
<A NAME="RF09111SS-7">7 </A>
Kim S.
Lee S.
Lee T.
Ko H.
Kim D.
J. Org. Chem.
2006,
71:
8661
<A NAME="RF09111SS-8A">8a </A>
Conrow RE.
Dean WD.
Org.
Process Res. Dev.
2008,
12:
1285
<A NAME="RF09111SS-8B">8b </A>
Banert K.
Joo YH.
Rüffer T.
Walfort B.
Lang H.
Angew.
Chem. Int. Ed.
2007,
46:
1168
<A NAME="RF09111SS-8C">8c </A>
Bräse S.
Gil C.
Knepper K.
Zimmermann V.
Angew. Chem. Int. Ed.
2005,
44:
5188
<A NAME="RF09111SS-9">9 </A>
Wuts PGM.
Green TW.
Protective Groups in Organic Synthesis
4th
ed.:
Wiley-Interscience;
New York:
2006.
<A NAME="RF09111SS-10">10 </A>
Menger FM.
Mandell L.
J. Am. Chem. Soc.
1967,
89:
4424
<A NAME="RF09111SS-11A">11a </A>
Kan T.
Fukuyama T.
Chem.
Commun.
2004,
353
<A NAME="RF09111SS-11B">11b </A>
Fukuyama T.
Cheung M.
Jow C.-K.
Hidai Y.
Kan T.
Tetrahedron
Lett.
1997,
38:
5831
<A NAME="RF09111SS-12A">12a </A>
Kemp SJ.
Bao J.
Pedersen SF.
J. Org. Chem.
1996,
61:
7162
<A NAME="RF09111SS-12B">12b </A>
Kempf DJ.
Sowin TJ.
Doherty EM.
Hannick SM.
Codavoci L.
Henry RF.
Green BE.
Spanton SG.
Norbeck DW.
J.
Org. Chem.
1992,
57:
5692
<A NAME="RF09111SS-12C">12c </A>
Sakaitanti M.
Ohfune Y.
J. Am. Chem. Soc.
1990,
112:
1150
<A NAME="RF09111SS-12D">12d </A>
Sakaitanti M.
Ohfune Y.
J. Org. Chem.
1990,
55:
870
<A NAME="RF09111SS-12E">12e </A>
Kano S.
Yokomatsu T.
Iwasawa H.
Shibuya S.
Tetrahedron Lett.
1987,
28:
6331
<A NAME="RF09111SS-12F">12f </A>
Baker BR.
Hullar TL.
J.
Org. Chem.
1965,
30:
4049
<A NAME="RF09111SS-13">13 </A>
Lee YM.
Baek DJ.
Lee S.
Kim D.
Kim S.
J.
Org. Chem.
2011,
76:
408
<A NAME="RF09111SS-14">14 </A>
Jo SY.
Kim HC.
Jeon DJ.
Kim HR.
Heterocycles
2001,
55:
1127
<A NAME="RF09111SS-15A">15a </A>
Davis FA.
Reddy GV.
Tetrahedron
Lett.
1996,
37:
4349
<A NAME="RF09111SS-15B">15b </A>
Mori K.
Nishio H.
Liebigs Ann. Chem.
1991,
253
<A NAME="RF09111SS-16">16 </A>
Owing to the reported instability
of 1 , it was also characterized as the
triacetate derivative 11 .
<A NAME="RF09111SS-17A">17a </A>
Lee J.-M.
Lim H.-S.
Chung S.-K.
Tetrahedron: Asymmetry
2002,
13:
343
<A NAME="RF09111SS-17B">17b </A>
Ohashi K.
Kosai S.
Arizuka M.
Watanabe T.
Yamagiwa Y.
Kamikawa T.
Tetrahedron
1989,
45:
2557 ; and references therein