References and Notes
1 Current Address: Pfizer Global Research & Development, 10770
Science Center Drive, San Diego, CA 92121, USA.
2a
Hawes EM.
Gorecki DKJ.
J. Heterocycl. Chem.
1972,
9:
703
2b
Armarego WLF.
J. Chem. Soc.
1962,
4094
2c
Ismail AG.
Wibberley Denman G.
J.
Chem. Soc.
1967,
24:
2613
2d
Stukenbrock H.
Mussmann R.
Geese M.
Ferandin Y.
Lozach O.
Lemcke T.
Kegel S.
Lomow A.
Burk U.
Dohrmann C.
Meijer L.
Austen M.
Kunick C.
J. Med. Chem.
2008,
51:
2196
2e
Wall
MJ.
Chen J.
Meegalla S.
Ballentine SK.
Wilson
KJ.
DesJarlais RL.
Schubert C.
Chaikin MA.
Crysler C.
Petrounia IP.
Donatelli RR.
Yurkow EJ.
Boczon L.
Mazzulla M.
Player MR.
Patch RJ.
Manthey CL.
Molloy C.
Tomczuk B.
Illig CR.
Bioorg.
Med. Chem. Lett.
2008,
18:
2097
2f Boerjesson L, Connolly S, Johansson H, Kristoffersson A, Linnanen T, Shamovsky I, and Skrinjar M. inventors; WO 2006-SE1012 20060904.
; Chem. Abstr. 2007, 146, 337739
2g Nagase T, Sato N, Kanatani A, and Tokita S. inventors; US 2005182045.
; Chem. Abstr. 2005, 143, 211923
3
Didiuk MT.
Griffith DA.
Benbow JW.
Liu KC.
Walker DP.
Bi FC.
Morris J.
Guzman-Perez A.
Gao H.
Bechle BM.
Kelley RM.
Yang X.
Dirico K.
Ahmed S.
Hungerford W.
DiBrinno J.
Zawistoski
MP.
Bagley SW.
Li J.
Zeng Y.
Santucci S.
Oliver R.
Corbett M.
Olson T.
Chen C.
Li M.
Paralkar VM.
Riccardi KA.
Healy DR.
Kalgutkar AS.
Maurer
TS.
Nguyen HT.
Frederick KS.
Bioorg. Med. Chem. Lett.
2009,
19:
4555
4a
Vasil’ev LS.
Surzhikov FE.
Dorokhov VA.
Russ. Chem.
Bull. Int. Ed.
2004,
53:
2319
4b An alternative and attractive
synthesis of ethyl ester of 2-trifluoromethyl nicotinic acid via
construction of the pyridine ring was reported after this work was
completed: Kiss LE.
Ferreira HS.
Learmonth DA.
Org.
Lett.
2008,
10:
1835
5
Gilman H.
Jones RG.
J. Am. Chem. Soc.
1943,
53:
2319
6a
Schlosser M.
Marull M.
Eur.
J. Org. Chem.
2003,
1569
6b
Schlosser M.
Angew
Chem. Int. Ed.
2006,
45:
5432
6c
Schlosser M.
Synlett
2007,
3096
For methods developed specifically
for CF3-group installation:
7a
Jarvie JMS.
Fitzgerald WE.
Janz GJ.
J. Am. Chem. Soc.
1956,
78:
978
7b
Clark JH.
McClinton MA.
Blade RJ.
J. Chem. Soc., Chem. Commun.
1988,
638
7c
Paratian JM.
Sibille S.
Perichon J.
J. Chem. Soc., Chem. Commun.
1992,
53
7d
Cottet F.
Schlosser M.
Eur. J. Org. Chem.
2002,
327
7e
Cottet F.
Marull M.
Mongin F.
Espinosa D.
Schlosser M.
Synthesis
2004,
1619
8
Li B.
Buzon RA.
Castaldi MJ.
Org.
Process Res. Dev.
2001,
5:
609
9
Mongin F.
Trécourt F.
Quéguiner G.
Tetrahedron Lett.
1999,
40:
5483
An N-oxide
intermediate was used for the preparation of 4-dimethylamino nicotinic
acid:
10a
Tono-Oka S.
Bull.
Chem. Soc. Jpn.
1982,
55:
1531
10b
Yamada S.
Misono T.
Iwai Y.
Masumizu A.
Akiyama Y.
J. Org.
Chem.
2006,
71:
6872
11a
Xu H.
Wolf C.
Chem.
Commun.
2009,
3035
11b Roehrscheid F, Rapp J, and Papenfuhs T. inventors; EP 647614.
;
Chem. Abstr 1995, 122, 290454
12 4-Iodo-2-(trifluoromethyl)nicotinic
acid (50 g, 158 mmol), Boc-amide (22.2 g, 189 mmol), and Cs2CO3 (103
g, 315 mmol) were combined in 2-methyl-2-butanol (500 mL) that was
previously bubbled with dry nitrogen. The reaction flask was purged
four times with nitrogen by applying vacuum to the flask then flushed
with dry nitrogen. Xantphos (2.74 g, 4.73 mmol) and Pd2(dba)3 (2.89
g, 3.15 mmol) were added. The nitrogen purging sequence was repeated
four times. The reaction was then heated to reflux (104-107 ˚C
internal temperature) for 2 h. Upon confirmation of reaction completion
by HPLC analysis, the reaction was cooled to r.t., and the solids
(mostly Cs2CO3) were removed by filtration.
The filter cake was rinsed with EtOAc. The filtrate was concentrated
under reduced pressured to give a dark orange oil. To this was added
CH2Cl2 (250 mL), the resulting mixture was
stirred for 10 min, and a slurry was obtained. The solids were collected
by filtration, rinsed with CH2Cl2 (25 mL),
and dried to give 5b (40.6 g, 84%)
as a white solid: mp 180-182 ˚C (EtOAc). ¹H
NMR (400 MHz, MeOH-d
4): δ = 8.36
(d, 1 H, J = 4.0
Hz), 8.31 (d, 1 H, J = 4.0 Hz),
1.51 (s, 9 H). ¹³C NMR (100 MHz, MeOH-d
4): δ = 173.1,
170.4, 153.4, 149.0, 145.8, 144.6 (q, J = 33
Hz), 115.96, 82.7, 28.8. MS (ESI+): m/z = 307.0 [M + 1]+,
251
[M + 1 - t-Bu]+,
206.9 [M + 1 - Boc]+.
Anal. Calcd for C12H13F3N2O4˙H2O:
C, 44.45; H, 4.66; F, 17.58; N, 8.64. Found: C, 44.16; H, 4.77;
F, 17.28; N, 8.56.
13 Compound 5b was
dissolved in MeOH (150 mL), and HCl (gaseous, 5.75 g, 158 mmol)
was bubbled into the solution. A white solid began to precipitate
in 5 min. MeOH was removed under reduced pressure to give 1 as a white solid: mp 214-215 ˚C
(MeOH, dec. observed). ¹H NMR (400 MHz, MeOH-d
4): δ = 7.85
(d, 1 H, J = 7.0
Hz), 6.90 (d, 1 H, J = 7.0
Hz). ¹³C NMR (100 MHz, MeOH-d
4): δ = 166.1, 157.8,
139.3, 136.2 (q, J = 37.5
Hz), 119.2 (q, J = 275.8
Hz), 116.8 (q, J = 2.0
Hz), 112.2. MS (ESI+): m/z = 207.2 [M + 1]+,
189.0 [M + 1 - H2O]+.
Anal. Calcd for C7H6ClF3N2O2: C,
34.66; H, 2.49; Cl, 14.61; F, 23.50; N, 11.55. Found: C, 34.52;
H, 2.55; Cl, 14.48; F, 23.36; N, 11.37.
For similar reactions with halo
nicotinic acid esters:
14a
Spicer JA.
Rewcastle GW.
Kaufman MD.
Black SL.
Plummer MS.
Denny WA.
Quin J.
Shahripour AB.
Barrett SD.
Whitehead CE.
Milbank JBJ.
Ohren JF.
Gowan RC.
Omer C.
Camp HS.
Esmaeil N.
Moore K.
Sebolt-Leopold JS.
Pryzbranowski S.
Merriman RL.
Ortwine DF.
Warmus JS.
Flamme CM.
Pavlovsky AG.
Tecle H.
J.
Med. Chem.
2007,
50:
5090
14b Collins I, Reader JC, Matthews TP, Cheung KM, Proisy N, Williams D, Hugh K, Sukhbinder S, Scanlon JE, Piton N, Addison GJ, and Cherry M. inventors; WO 2009044162.
; Chem. Abstr. 2009, 150, 398578