Synlett 2010(14): 2159-2163  
DOI: 10.1055/s-0030-1258510
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Catalyst-Free Process for the Synthesis of 5-Aryl-2-Oxazolidinones via Cycloaddition Reaction of Aziridines and Carbon Dioxide

Xiao-Yong Dou, Liang-Nian He*, Zhen-Zhen Yang, Jing-Lun Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. of China
Fax: +86(22)23504216; e-Mail: heln@nankai.edu.cn;
Further Information

Publication History

Received 2 March 2010
Publication Date:
22 July 2010 (online)

Abstract

A simple approach for facile synthesis of 5-aryl-2-­oxazolidinones in excellent regioselectivity from aziridines under compressed CO2 conditions was developed in the absence of any catalyst and organic solvent. The reaction outcome was found to be tuned by subtly adjusting CO2 pressure. The adduct formed in situ of aziridine and CO2 is assumed to act as a catalyst in this reaction, which was also studied by means of in situ FT-IR technique.

    Reference and Notes

  • 1a Gawley RE. Campagna SA. Santiago M. Ren T. Tetrahedron: Asymmetry  2002,  13:  29 
  • 1b Aurelio L. Brownlee RTC. Hughus AB. Chem. Rev.  2004,  104:  5823 
  • 1c Makhtar TM. Wright GD. Chem. Rev.  2005,  105:  529 
  • 1d Barbachyn MR. Ford CW. Angew. Chem. Int. Ed.  2003,  42:  2010 
  • 1e Hoellman DB. Lin G. Rattan LMA. Jacobs MR. Appelbaum PC. Antimicrob. Agents Chemother.  2003,  47:  1148 
  • 2a Ben-Ishai D. J. Am. Chem. Soc.  1956,  78:  4962 
  • 2b Vo L. Ciula J. Gooding OW. Org. Process Res. Dev.  2003,  7:  514 
  • 2c Close WJ. J. Am. Chem. Soc.  1951,  73:  95 
  • 2d Lynn JW. inventors; US  2975187.  ; Chem. Abstr. 1961, 55, 87561
  • 2e Steele AB. inventors; US  2868801.  ; Chem. Abstr. 1959, 53, 56549
  • 2f Yoshida T. Kambe N. Ogawa A. Sonoda N. Phosphorus, Sulfur Relat. Elem.  1988,  38:  137 
  • 3a Miller AW. Nguyen ST. Org. Lett.  2004,  6:  2301 
  • 3b Shen YM. Duan WL. Shi M. Eur. J. Org. Chem.  2004,  3080 
  • 3c Hancock MT. Pinhas AR. Tetrahedron Lett.  2003,  44:  5457 
  • 3d Mu WH. Chasse GA. Fang DC. J. Phys. Chem. A.  2008,  112:  6708 
  • 3e Sudo A. Morioka Y. Sanda F. Endo T. Tetrahedron Lett.  2004,  45:  1363 
  • 3f Sudo A. Morioka Y. Koizumi E. Sanda F. Endo T. Tetrahedron Lett.  2003,  44:  7889 
  • 3g Kawanami H. Ikushima Y. Tetrahedron Lett.  2002,  43:  3841 
  • 3h Kawanami H. Matsumoto H. Ikushima Y. Chem. Lett.  2005,  34:  60 
  • 3i Tascedda P. Dunach E. Chem. Commun.  2000,  449 
  • 3j Du Y. Wu Y. Liu AH. He LN. J. Org. Chem.  2008,  73:  4709 
  • 3k Wu Y. He LN. Du Y. Wang JQ. Miao CX. Li W. Tetrahedron  2009,  65:  6204 
  • 4a Mitsudo T. Hori Y. Yamakawa Y. Watanabe Y. Tetrahedron Lett.  1987,  28:  4417 
  • 4b Shi M. Shen YM. J. Org. Chem.  2002,  67:  16 
  • 4c Costa M. Chiusoli GP. Rizzardi M. Chem. Commun.  1996,  1699 
  • 4d Costa M. Chiusoli GP. Taffurelli D. Dalmonego G. J. Chem. Soc., Perkin Trans. 1  1998,  1541 
  • 4e Maggi R. Bertolotti C. Orlandini E. Oro C. Sartoria G. Selvab M. Tetrahedron Lett.  2007,  48:  2131 
  • 4f Kayaki Y. Yamamoto M. Suzuki T. Ikariya T. Green Chem.  2006,  8:  1019 
  • 5a Gu YL. Zhang QH. Duan ZY. Zhang J. Zhang SG. Deng YQ. J. Org. Chem.  2005,  70:  7376 
  • 5b Jiang HF. Zhao JW. Tetrahedron Lett.  2009,  50:  60 
  • 5c Fournier J. Brunean C. Dixneuf PH. Tetrahedron Lett.  1990,  31:  1721 
  • 5d Zhang QH. Shi F. Gu YL. Yang J. Deng YQ. Tetrahedron Lett.  2005,  46:  5907 
  • 5e Jiang HF. Zhao JW. Wang AZ. Synthesis  2008,  763 
  • 6a Matsuda H. Baba A. Nomufa R. Korl M. Ogawa S. Ind. Eng. Chem. Prod. Res. Dev.  1985,  24:  239 
  • 6b Tominaga K. Sasaki Y. Synlett  2002,  307 
  • 6c Kubota Y. Kodaka M. Tomohiro T. Okuno H. J. Chem. Soc., Perkin Trans. 1  1993,  5 
  • 6d Kodaka M. Tomihiro T. Lee AL. Okuno H. J. Chem. Soc., Chem. Commun.  1989,  1479 
  • 6e Paz J. Perez-Balado C. Iglesias B. Munoz L. Synlett  2009,  395 
  • 6f Dinsmore CJ. Mercer SP. Org. Lett.  2004,  6:  2885 
  • 6g Patil YP. Tambade PJ. Jagtap SR. Bhanage BM. J. Mol. Catal. A: Chem.  2008,  289:  14 
  • 6h Du Y. Wang JQ. Chen JY. Cai F. Tian JS. Kong DL. He LN. Tetrahedron Lett.  2006,  47:  1271 
  • 6i Bhanage BM. Fujita S. Ikushima Y. Arai M. Green Chem.  2003,  5:  340 
  • 6j Bhanage BM. Fujita S. Ikushima Y. Arai M. Green Chem.  2004,  6:  78 
  • 6k Fujita S. Kanamaru H. Senboku H. Arai M. Int. J. Mol. Sci.  2006,  7:  438 
  • 7 Yoo WJ. Li CJ. Adv. Synth. Catal.  2008,  350:  1503 
  • 8a Ihata O. Kayaki Y. Ikariya T. Angew. Chem. Int. Ed.  2004,  43:  717 
  • 8b Ihata O. Kayaki Y. Macromolecules  2005,  38:  6429 
  • 8c Soga K. Chiang WY. Ikeda S.
    J. Polym. Sci., Polym. Chem. Ed.  1974,  12:  121 
  • 8d Lundberg RD, Albans S, and Montgomery DR. inventors; US  3523924.  ; Chem. Abstr. 1970, 73, 111037
  • 9a Jessop PG. Ikariya T. Noyori R. Chem. Rev.  1999,  99:  475 
  • 9b Green Chemistry Using Liquid and Supercritical Carbon Dioxide   DeSimone JM. Tumas W. Oxford University; New York: 2003. 
  • 9c Chemical Synthesis Using Supercritical Fluids   Jessop PG. Leitner W. Wiley-VCH; Weinheim: 1999. 
  • 9d Leitner W. Acc. Chem. Res.  2002,  35:  746 
  • 9e Beckman EJ. J. Supercrit. Fluids  2004,  28:  121 
  • 9f Prajapati D. Gohain M. Tetrahedron  2004,  60:  815 
  • 10 Lu XB. Xiu JH. He R. Jin K. Luo LM. Feng X.
    J. Appl. Catal. A  2004,  275:  73 
  • 13 Kong DL. He LN. Wang JQ. Catal. Commun.  2010,  11:  992 
  • CO2 activation by tertiary amines:
  • 14a Pérez ER. Franco DW. Tetrahedron Lett.  2002,  43:  4091 
  • 14b Endo T. Nagai D. Macromolecules  2004,  37:  2007 
  • 14c Phan L. Andreatta JR. Horvey LK. Edie CF. Luco AL. Mirchandani A. Darensbourg DJ. Jessop PG. J. Org. Chem.  2008,  73:  127 
  • 14d Pereira FS. deAzevedo ER. Tetrahedron  2008,  64:  10097 
  • 14e North M. Pasquale R. Angew. Chem. Int. Ed.  2009,  48:  2946 
  • 14f Wykes A. MacNeil SL. Synlett  2007,  107 
  • 14g Masahiro YF. MacFarlane DR. Electrochem. Commun.  2006,  8:  445 
  • 14h Masahiro YF. Johansson K. Tetrahedron Lett.  2006,  47:  2755 
  • 14i Ying AG. Chen XZ. Ye WD. Tetrahedron Lett.  2009,  50:  1653 
  • 15 Formation of Et2NH with CO2 identified by ¹H NMR: Kong DL. He LN. Wang JQ. Synlett  2010,  1276 
11

Typical Procedure for the Carboxylation of Aziridine with CO 2
In a typical reaction, the carboxylation of aziridine with CO2 was carried out in a 25 mL stainless steel autoclave. Aziridine (1 mmol) was charged into the reactor at r.t. CO2 was introduced into the autoclave, and then the mixture was stirred at predetermined temperature for 20 min to reach the equilibration. The pressure was then adjusted to the desired pressure, and the mixture was stirred continuously. When the reaction finished, the reactor was cooled in ice-water and CO2 was ejected slowly. An aliquot of sample was taken from the resultant mixture and dissolved in dry CH2Cl2 for GC analysis. GC analyses were performed on Shimadzu GC-2014, equipped with a capillary column (RTX-5, 30 m × 0.25 mm × 0.25 µm) using a flame-ionization detector. The residue was purified by column chromatography on silica gel (eluting with 8:1 to 1:1 PE-EtOAc) to furnish the product. The products were further identified by ¹H NMR, ¹³C NMR, and MS which are consistent with those reported in the literature³a-j and in good agreement with the assigned structures.

12

Spectral characteristics for representative examples of the products were provided. 3-Ethyl-5-phenyl-2-oxazolidinone (2a)
Colorless liquid. ¹H NMR (300 MHz, CDCl3): δ = 1.17 (t, 3 H, J = 7.2 Hz), 3.29-3.45 (m, 3 H), 3.92 (t, 1 H, J = 8.7 Hz), 5.48 (t, 1 H, J = 7.8 Hz), 7.34-7.42 (m, 5 H). ¹³C NMR (75 MHz, CDCl3): δ = 12.4, 38.8, 51.5, 74.2, 125.4, 128.6, 128.8, 138.8, 157.5. ESI-MS: m/z calcd for C11H13NO2: 191.09; found: 192.29 [M + H]+, 214.38 [M + Na]+, 405.01 [2 M + Na]+.
3-Ethyl-4-phenyl-2-oxazolidinone (3a)
Colorless liquid. ¹H NMR (300 MHz, CDCl3): δ = 1.05 (t, 3 H, J = 5.4 Hz), 2.79-2.88 (m, 1 H), 3.48-3.57 (m, 1 H), 4.10 (t, 1 H, J = 6.0 Hz), 4.62 (t, 1 H, J = 6.6 Hz), 4.81 (t, 1 H, J = 5.4 Hz),7.30-7.44 (m, 5 H). ¹³C NMR (75 MHz, CDCl3): δ = 12.1, 36.9, 59.4, 69.8, 127.0, 129.0, 129.2, 137.9, 158.1. ESI-MS: m/z calcd for C11H13NO2: 191.09; found: 192.29 [M + H]+, 214.38 [M + Na]+.