Abstract
A N-Heterocyclic carbenes (NHC) catalyzed vinylogous aldol reaction
between 2-(trimethylsilyloxy)furan and aldehydes has been developed,
providing γ-substituted butenolides in high yields with
good diastereoselectivities. Furthermore, the catalyst loading can
be reduced to 1 mol%.
Key words
N- heterocyclic carbenes - vinylogous
aldol reaction - butenolides - 2-(trimethylsilyloxy)furan - aldehyde
References and Notes
1a
Igau A.
Grutzmacher H.
Baceiredo A.
Bertrand G.
J.
Am. Chem. Soc.
1988,
110:
6463
1b
Igau A.
Baceiredo A.
Trinquier G.
Betrand G.
Angew. Chem., Int. Ed. Engl.
1989,
28:
621
1c
Arduengo AJ.
Harlow RL.
Kline M.
J. Am. Chem. Soc.
1991,
113:
361
For recent reviews, see:
2a
N-Heterocyclic
Carbenes in Synthesis
Nolan SP.
Wiley-VCH;
Weinheim:
2006.
2b
N-Heterocyclic
Carbenes in Transition Metal Catalysis, In Topics
in Organometallic Chemistry
Vol. 21:
Glorius F.
Springer;
Berlin/Heidelberg:
2007.
2c
González SD.
Morion N.
Nolan SP.
Chem. Rev.
2009,
109:
3612
For reviews, see:
3a
Enders D.
Balensiefer T.
Acc. Chem. Res.
2004,
37:
534
3b
Zeitler K.
Angew.
Chem. Int. Ed.
2005,
44:
7506
3c
Enders D.
Niemeier O.
Henseler A.
Chem.
Rev.
2007,
107:
5606
3d
Marion N.
Díez-González S.
Nolan SP.
Angew. Chem. Int. Ed.
2007,
46:
2988
3e
Nair V.
Vellalath S.
Babu BP.
Chem.
Soc. Rev.
2008,
37:
2691
4a
Ugai T.
Tanaka S.
Dokawa S.
J. Pharm.
1943,
63:
269
4b
Enders D.
Kallfass U.
Angew. Chem. Int. Ed.
2002,
41:
1743
4c
Enders D.
Han J.
Tetrahedron: Asymmetry
2008,
19:
1367
4d
Enders D.
Niemeier O.
Balensiefer T.
Angew.
Chem. Int. Ed.
2006,
45:
1463
4e
Takikawa H.
Hachisu Y.
Bode JW.
Suzuki K.
Angew. Chem. Int. Ed.
2006,
45:
3492
5a
Stetter H.
Schreckenberg M.
Angew.
Chem., Int. Ed. Engl.
1973,
12:
81
5b
Kerr MS.
Rovis T.
Synlett
2003,
1934
5c
Kerr MS.
Rovis T.
J. Am. Chem.
Soc.
2004,
126:
8876
5d
Nakamura T.
Hara O.
Tamura T.
Makino K.
Hamada Y.
Synlett
2005,
155
5e
Mattson AE.
Zuhl AM.
Reynolds TE.
Scheidt KA.
J.
Am. Chem. Soc.
2006,
128:
4932
5f
Dirocco DA.
Oberg KM.
Dalton DM.
Rovis T.
J.
Am. Chem. Soc.
2009,
131:
10872
6a
Burstein C.
Glorius F.
Angew.
Chem. Int. Ed.
2004,
43:
6205
6b
Sohn SS.
Rosen EL.
Bode JW.
J. Am. Chem. Soc.
2004,
126:
14370
6c
Burstein C.
Tschan S.
Xie X.
Glorius F.
Synthesis
2006,
2418
6d
Nair V.
Vellalath S.
Poonoth M.
Suresh E.
J. Am. Chem. Soc.
2006,
128:
8736
6e
Chiang P.-C.
Kaeobamrung J.
Bode JW.
J.
Am. Chem. Soc.
2007,
129:
3520
6f
David BC.
Raup DEA.
Scheidt KA.
J. Am. Chem. Soc.
2010,
132:
5345
7a
Bakhtiar C.
Smith EH.
J.
Chem. Soc., Perkin Trans. 1
1994,
239
7b
Nyce GW.
Lamboy JA.
Connor EF.
Waymouth RM.
Hedrick JL.
Org. Lett.
2002,
4:
3587
7c
Grasa GA.
Kissling RM.
Nolan SP.
Org. Lett.
2002,
4:
3583
7d
Grasa GA.
Singh SM.
Nolan SP.
Synthesis
2004,
971
7e
Kano T.
Sasaki K.
Maruoka K.
Org.
Lett.
2005,
7:
1347
7f
Zeng T.-Q.
Song G.-H.
Li C.-J.
Org.
Biomol. Chem.
2010,
8:
901
8a
Connor EF.
Nyce GW.
Myers M.
Möck A.
Hedrick JL.
J. Am. Chem. Soc.
2002,
124:
914
8b
Nyce GW.
Glauser T.
Connor EF.
Möck A.
Waymouth
RM.
Hedrick JL.
J. Am. Chem. Soc.
2003,
125:
3046
8c
Raynaud J.
Ciolino A.
Baceiredo A.
Destarac M.
Bonnette F.
Kato T.
Gnanou Y.
Taton D.
Angew. Chem. Int. Ed.
2008,
47:
5390
8d
Raynaud J.
Ottou WN.
Gnanou Y.
Taton D.
Chem. Commun.
2009,
6249
9a
Zhang YR.
He L.
Wu X.
Shao PL.
Ye S.
Org. Lett.
2008,
10:
277
9b
Duguet N.
Campbell CD.
Slawin AMZ.
Smith AD.
Org.
Biomol. Chem.
2008,
6:
1108
9c
He L.
Lv H.
Zhang Y.-R.
Ye S.
J. Org. Chem.
2008,
73:
8101
9d
Zhang Y.-R.
Lv H.
Zhou D.
Ye S.
Chem. Eur. J.
2008,
14:
8473
9e
Huang X.-L.
He L.
Shao P.-L.
Ye S.
Angew. Chem. Int. Ed.
2009,
48:
192
9f
Wang X.-N.
Shao P.-L.
Lv H.
Ye S.
Org. Lett.
2009,
11:
4029
9g
Lv H.
You L.
Ye S.
Adv.
Synth. Catal.
2009,
351:
2822
For selected examples, see:
10a
Li G.-Q.
Dai L.-X.
You S.-L.
Org.
Lett.
2009,
11:
1623
10b
Hirano K.
Biju AT.
Piel I.
Glorius F.
J. Am. Chem. Soc.
2009,
131:
14190
10c
Riduan SN.
Zhang Y.
Ying JY.
Angew. Chem. Int. Ed.
2009,
48:
3322
10d
Kawanaka Y.
Phillips EM.
Scheidt KA.
J. Am. Chem. Soc.
2009,
131:
18028
10e
Raveendran AE.
Paul RR.
Suresh E.
Nair V.
Org. Biomol.
Chem.
2010,
4:
901
10f
Biju AT.
Wurz NE.
Glorius F.
J. Am. Chem. Soc.
2010,
132:
5970
10g
Vora
HU.
Rovis T.
J. Am. Chem.
Soc.
2010,
132:
2860
10h
Sarkar S.
Grimme S.
Studer A.
J.
Am. Chem. Soc.
2010,
132:
1190
10i
Gu L.
Zhang Y.
J. Am. Chem. Soc.
2010,
132:
914
11
Song J.
Tan Z.
Reeves JT.
Gallou F.
Yee NK.
Senanayake CH.
Org. Lett.
2005,
7:
2193
12a
Song JJ.
Gallou F.
Reeves JT.
Tan ZL.
Yee
NK.
Senanayake CH.
J. Org. Chem.
2006,
71:
1273
12b
Suzuki Y.
Bakar A.
Muramatsu K.
Sato M.
Tetrahedron
2006,
62:
4227
12c
Kano T.
Sasaki K.
Konishi T.
Mii H.
Maruoka K.
Tetrahedron
Lett.
2006,
47:
4615
12d
Suzuki Y.
Muramatsu K.
Yamauchi K.
Morie Y.
Sato M.
Tetrahedron
2006,
62:
302
12e
Fukuda Y.
Maeda Y.
Ishii S.
Kondo K.
Aoyama T.
Synthesis
2006,
589
12f
Fukuda Y.
Kondo K.
Aoyama T.
Synthesis
2006,
2649
12g
Fukuda Y.
Maeda Y.
Kondo K.
Aoyama T.
Synthesis
2006,
1937
12h
Fukuda Y.
Maeda Y.
Kondo K.
Aoyama T.
Chem. Pharm. Bull.
2006,
54:
397
13a
Wu J.
Sun X.
Xia HG.
Eur. J. Org. Chem.
2005,
4769
13b
Wu J.
Sun XY.
Ye SQ.
Sun W.
Tetrahedron Lett.
2006,
47:
4813
13c
Sun X.
Ye S.
Wu J.
Eur.
J. Org. Chem.
2006,
4787
13d
Liu YK.
Li R.
Yue L.
Li BJ.
Chen YC.
Wu Y.
Ding LS.
Org.
Lett.
2006,
8:
1521
14
Song J.
Tan Z.
Reeves JT.
Yee NK.
Senanayake
CH.
Org. Lett.
2007,
9:
1013
For reviews on butenolide-containing
natural products, see:
15a
Rodriguez AD.
Tetrahedron
1995,
51:
4571
15b
Alali FW.
Liu XX.
McLaughlin JL.
J. Nat. Prod.
1999,
62:
504
15c
Hanson JR.
Nat. Prod. Rep.
2002,
19:
381
16a
Jefford CW.
Jaggi D.
Boukouvalas J.
Tetrahedron Lett.
1987,
28:
4037
16b
Brown DW.
Campbell MM.
Taylor AP.
Zhang X.
Tetrahedron
Lett.
1987,
28:
985
16c
Bauer T.
Tetrahedron:
Asymmetry
1996,
7:
981
16d
Ferrié S.
Reymond S.
Capdevielle P.
Cossy J.
Synlett
2007,
2891
16e
Sarma KD.
Zhang J.
Curran TT.
J. Org. Chem.
2007,
72:
3311
For reviews of vinylogous aldol
reactions, see:
17a
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Synlett
1999,
1333
17b
Casiraghi G.
Zanardi F.
Appendino G.
Rassu G.
Chem. Rev.
2000,
100:
1929
17c
Denmark SE.
Heemstra JR.
Beutner GL.
Angew. Chem. Int.
Ed.
2005,
44:
4682
17d
Kalesse M.
Top.
Curr. Chem.
2005,
244:
43
For recent examples of vinylogous aldol reactions of 2-(trimethylsilyloxy)furan,
see:
17e
Ollevier T.
Bouchard JE.
Desyroy V.
J.
Org. Chem.
2008,
73:
331
17f
Yadav JS.
Subba Reddy BV.
Narasimhulu G.
Satheesh G.
Tetrahedron
Lett.
2008,
49:
5683
17g
Szlosek M.
Figadère B.
Angew. Chem. Int.
Ed.
2009,
48:
1799
17h
Frings M.
Atodiresei I.
Runsink J.
Raabe G.
Bolm C.
Chem.
Eur. J.
2009,
15:
1566
17i
Raders SM.
Verkade JG.
J.
Org. Chem.
2009,
74:
5417
17j
Ube H.
Shimada N.
Terada M.
Angew.
Chem. Int. Ed.
2010,
49:
1858
17k
Zhu N.
Ma BC.
Zhang Y.
Wang W.
Adv. Synth. Catal.
2010,
352:
1291
18
Rosa MD.
Citro L.
Soriente A.
Tetrahedron
Lett.
2006,
47:
8507
19
Arduengo AJ.
Krafczyk R.
Schmutzler R.
Tetrahedron
1999,
55:
14523
20
General Procedure
for NHC-Catalyzed Vinylogous Aldol Reaction of 2-(Trimethylsilyloxy)furan
with Aldehydes
To a solution of 2 (4.0
mg, 0.012 mmol) in anhyd THF (2.0 mL) was added KOt -Bu
(1.1 mg, 0.01 mmol) under N2 . After stirred for 30 min
at r.t., the solution was then cooled to 0 ˚C
and aldehyde (1.0 mmol) was added followed by 2-(trimethylsilyloxy)furan
(1.3 mmol, 200 µL). The reaction mixture was then stirred
at r.t. until full consumption of the starting aldehyde as indicated
by TLC. The solution was then cooled to 0 ˚C and
quenched with 10% aq HCl. The mixture was stirred for 30
min and neutralized by sat. aq NaHCO3 and then extracted
with EtOAc. The combined organic phase was dried over anhyd Na2 SO4 ,
filtered, and concentrated. The ratio of anti /syn was determined by ¹ H NMR
analysis of the crude products, and the configurations were assigned
by ¹ H NMR comparison with literature data. The
crude products were purified through silica gel chromatography (EtOAc-PE)
to afford pure anti products or a mixture
of anti /syn isomers.
Data for 8g
Yield 83%;
white solid; R
f
= 0.14
(PE-EtOAc, 4:1); mp 134.5-135.5 ˚C. ¹ H
NMR (400 MHz, CDCl3 ): δ = 7.61 (dd, J = 7.6, 1.2
Hz, 1 H), 7.20-7.45 (m, 4 H), 6.20 (dd, J = 5.6, 2.0
Hz, 1 H), 5.62 (t, J = 4.0
Hz, 1 H), 5.36-5.44 (m, 1 H), 3.36 (d, J = 4.4
Hz, 1 H). ¹³ C NMR (100 MHz, CDCl3 ): δ = 172.3,
151.2, 134.5, 130.8, 128.6, 126.9, 126.4, 122.5, 83.6, 68.4. IR
(KBr): ν = 3390, 1726, 1465, 1437, 1342, 1188, 1108,
1025, 918, 819, 744, 609 cm-¹ . ESI-HRMS: m/z calcd for C11 H9 ClO3 Na:
247.0132; found: 247.0156.
21 For recent study of penta- and hexacoordinate
silicon-NHC complexes, see: Ghadwal RS.
Sen SS.
Roesky HW.
Tavcar G.
Merkel S.
Stalke D.
Organometallics
2009,
28:
6347