Synlett 2010(16): 2443-2448  
DOI: 10.1055/s-0030-1258566
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

3,3′-Bis(arylbenzofurans) via a Gold-Catalyzed Domino Process

Mathieu G. Auzias, Markus Neuburger, Hermann A. Wegner*
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
Fax: +41(61)2670976; e-Mail: hermann.wegner@unibas.ch;
Further Information

Publication History

Received 27 July 2010
Publication Date:
10 September 2010 (online)

Abstract

A new heterogeneous gold-catalyzed system for the domino cyclization oxidative coupling of 2-alkynyl phenols for the formation of 3,3′-bisbenzofurans was developed. The substrate and the catalyst scope as well as the reaction conditions were investigated and optimized. This method provides access to this novel structural theme in two steps starting from commercially available chemicals. The molecular structure of the 3,3′-bisbenzofurans was confirmed by single-crystal X-ray analysis.

    References and Notes

  • 1a Hou XL. Yang Z. Yeung KS. Wong HNC. Progress in Heterocyclic Chemistry   Vol. 19:  Gribble GW. Joule JA. Elsevier; Oxford: 2008.  p.176 ; and previous volumes in the series
  • For recent work on benzofurans of pharmacological interest, see:
  • 1b Carlsson B. Singh BN. Temciuc M. Nilsson S. Li Y.-L. Mellin C. Malm J. J. Med. Chem.  2002,  45:  623 
  • 1c Flynn BL. Hamel E. Jung MK. J. Med. Chem.  2002,  45:  2670 
  • 1d Sall DJ. Bailey DL. Bastian JA. Buben JA. Chirgadze NY. Clemens-Smith AC. Denney ML. Fisher MJ. Giera DD. Gifford-Moore DS. Harper RW. Johnson LM. Klimkowski VJ. Kohn TJ. Lin H.-S. McCowan JR. Palkowitz AD. Richett ME. Smith GF. Snyder DW. Takeuchi K. Toth JE. Zhang M. J. Med. Chem.  2000,  43:  649 
  • 2 Erber S. Ringshandl R. von Angerer E. Anti-Cancer Drug Des.  1991,  6:  417 
  • 3 Malamas MS. Sredy J. Moxham C. Katz A. Xu WX. McDevitt R. Adebayo FO. Sawicki DR. Seestaller L. Sullivan D. Taylor JR. J. Med. Chem.  2000,  43:  1293 
  • 4a Watanabe Y. Yoshiwara H. Kanao M. J. Heterocycl. Chem.  1993,  30:  445 
  • 4b McCallion GD. Curr. Org. Chem.  1999,  3:  67 
  • 5 McAllister GD. Hartley RC. Dawson MJ. Knaggs AR. J. Chem. Soc., Perkin Trans. 1  1998,  3453 
  • 6a Piloto AM. Fonseca ASC. Costa SPG. Gonçalves MST. Tetrahedron  2006,  62:  9258 
  • 6b Piloto AM. Costa SPG. Gonçalves MST. Tetrahedron Lett.  2005,  46:  4757 
  • 7 Yang L.-Y. Chang C.-F. Huang Y.-C. Lee Y.-J. Hu C.-C. Tseng T.-H. Synthesis  2009,  1175 
  • 8a Kim S.-I. Park I.-H. Song K.-S. J. Antibiot.  2002,  7:  623 
  • 8b Song K.-S. Raskin I. J. Nat. Prod.  2002,  65:  76 
  • 9 Bakunova SM. Bakunov SA. Wenzler T. Barszcz T. Werbovetz KA. Brun R. Hall JE. Tidwell RR.
    J. Med. Chem.  2007,  50:  5807 
  • 10 Kirilmis C. Koca M. Çukurovali A. Ahmedzade M. Kazaz C. Molecules  2005,  10:  1399 
  • 11 Bakunova SM. Bakunov SA. Wenzler T. Barszcz T. Werbovetz KA. Brun R. Hall JE. Tidwell RR.
    J. Med. Chem.  2007,  50:  5807 
  • 12 Benincori T. Brenna E. Sannicolò F. Trimarco L. Antognazza P. Cesarotti E. Demartin F. Pilati T. J. Org. Chem.  1996,  61:  6244 
  • 13a Hashmi ASK. Enns E. Frost TM. Schäfer S. Schuster A. Frey W. Rominger F. Synthesis  2008,  2707 
  • 13b Zhang Y. Xin Z.-J. Xue J.-J. Li Y. Chin. J. Chem.  2008,  26:  1461 
  • 13c Belting V. Krause N. Org. Lett.  2006,  8:  4489 
  • 13d Hashmi ASK. Frost TM. Bats JW. Org. Lett.  2001,  3:  3769 
  • 14a Cui L. Zhang G. Zhang L. Bioorg. Med. Chem. Lett.  2009,  19:  3884 
  • 14b Zhang G. Peng Y. Cui L. Zhang L. Angew. Chem. Int. Ed.  2009,  48:  3112 
  • 14c Wegner HA. Chimia  2009,  63:  44 
  • 14d Kar A. Mangu N. Kaiser HM. Beller M. Tse MK. Chem. Commun.  2008,  386 
  • 14e Hashmi ASK. Blanco MC. Fischer D. Bats JW. Eur. J. Org. Chem.  2006,  1387 
  • 14f Zhang G. Cui L. Wang Y. Zhang L. J. Am. Chem. Soc.  2010,  132:  1474 
  • 14g Hashmi ASK. Ramamurthi TD. Rominger F. J. Organomet. Chem.  2009,  694:  592 
  • 15 de Haro T. Nevado C. J. Am. Chem. Soc.  2010,  132:  1512 
  • 16 Iglesias A. Muñiz K. Chem. Eur. J.  2009,  15:  10563 
  • 17a Kar A. Mangu N. Kaiser HM. Tse MK.
    J. Organomet. Chem.  2009,  694:  524 
  • 17b Hopkinson MN. Tessier A. Salisbury A. Giuffredi GT. Combettes LE. Gee AD. Gouverneur V. Chem. Eur. J.  2010,  16:  4739 
  • 18 Tietze LF. Brasche G. Gericke KM. Domino Reactions in Organic Synthesis   Wiley-VCH; Weinheim: 2006. 
  • 19 Wegner HA. Ahles S. Neuburger M. Chem. Eur. J.  2008,  14:  11310 
  • 20 For a recent example of a transition-metal-catalyzed domino reaction, see: Leibeling M. Koester DC. Pawliczek M. Schild SC. Werz DB. Nat. Chem. Biol.  2010,  6:  199 
  • 21 Hashmi ASK. Ramamurthi TD. Rominger F. Adv. Synth. Catal.  2010,  352:  971 
  • 22 Hashmi ASK. Lothschuetz C. Ackermann M. Doepp R. Anantharaman S. Marchetti B. Bertagnolli H. Rominger F. Chem. Eur. J.  2010,  16:  8012 
  • 23 Pelter A. Elgendy SMA. J. Chem. Soc., Perkin Trans. 1  1993,  1891 
24

The procedure described for compound 2a was applied for compounds 2b-g. HAuCl4 (17.5 mg, 10 mol%) was placed into a 20 mL vial (well dried), equipped with a stir bar. Et2O (10 mL) was added, and the mixture was stirred for 5 min at r.t. Then, 2-alkynlphenol (100 mg, 1 equiv) was added first, followed by PhI(OAc)2 (848 mg, 5 equiv) 5 min later. The mixture was stirred at r.t. overnight. The reaction mixture was filtered and concentrated. The crude product was purified by flash column chromatography or on preparative TLC. Compound 2a was isolated as a white powder with a yield of 37% (37 mg); mp 179-181 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 7.80-7.74 (m, 4 H), 7.63 (d, J = 8.2 Hz, 2 H), 7.33 (m, 2 H), 7.29-7.20 (m, 6 H), 7.17-7.07 (m, 4 H). ¹³C NMR (101 MHz, CDCl3): δ = 154.76 (2 C), 152.37 (2 C), 130.84 (2 C), 129.87 (2 C), 128.98 (4 C), 128.92 (2 C), 126.62 (4 C), 125.32 (2 C), 123.41 (2 C), 121.11 (2 C), 111.62 (2 C), 108.07 (2 C). ESI-HRMS: m/z calcd for [C28H18O2Na]+: 409.1204 [M + Na]+; found: 409.1199.
MS (EI): m/z (%) = 386.1 (100) [M+], 308.1 (9), 281.1 (7).
IR: ν = 1600, 1588, 1486, 1470, 1454, 1439, 1338, 1288, 1254, 1203, 1109, 1063, 1026, 1008, 920 cm.

25

Crystallographic data for compounds 2a and 2b have been deposited at the Cambridge Crystallographic Data Center, the respective deposition numbers are 772967 and 772968.