Synlett 2010(17): 2654-2658  
DOI: 10.1055/s-0030-1258766
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Bis-C-Aminoglycosylation toward the Synthesis of the Pluramycins

Masayuki Shigetaa,b, Tomohiko Hakamataa,b, Yukie Watanabea,b, Kei Kitamuraa,b, Yoshio Andoa,b, Keisuke Suzuki*a,b, Takashi Matsumoto*b,c
a Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo, 152-8551, Japan
b Japan Science and Technology Agency (JST), SORST, O-okayama, Meguro, Tokyo, 152-8551, Japan
c School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
Fax: +81(42)6763257; e-Mail: tmatsumo@toyaku.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 4 August 2010
Publikationsdatum:
01. Oktober 2010 (online)

Abstract

Two bis-C-aminoglycosyl arenes containing the angolosamine and the vancosamine moieties, which are potentially useful as the D-ring fragments of the pluramycin-type antibiotics, were efficiently synthesized by the OC-glycoside rearrangement based strategy.

    References and Notes

  • For the first isolation, see:
  • 1a Maeda K. Takeuchi T. Nitta K. Yagishita K. Utahara R. Osato T. Ueda M. Kondo S. Okami Y. Umezawa H. J. Antibiot., Ser. A  1956,  9:  75 
  • 1b For the first structure determination, see: Furukawa M. Hayakawa I. Ohta G. Iitaka Y. Tetrahedron  1975,  31:  2989 
  • For reviews, see:
  • 1c Séquin U. Fortschr. Chem. Org. Naturst.  1986,  50:  57 
  • 1d Bililign T. Griffith B. Thorson J. Nat. Prod. Rep.  2005,  22:  742 
  • For reviews, see:
  • 2a Hansen MR. Hurley LH. Acc. Chem. Res.  1996,  29:  249 
  • 2b Willis B. Arya DP. Curr. Org. Chem.  2006,  10:  663 
  • For synthetic studies, see:
  • 3a Parker KA. Koh Y.-H.
    J. Am. Chem. Soc.  1994,  116:  11149 
  • 3b Parker KA. Su D.-S. J. Carbohydr. Chem.  2005,  24:  199 
  • 3c Kaclin DE. Lopez OD. Martin SF. J. Am. Chem. Soc.  2001,  123:  6937 
  • 3d Martin SF. Pure Appl. Chem.  2003,  75:  63 
  • 3e Fei Z. McDonald FE. Org. Lett.  2007,  9:  3547 
  • 4a Yamauchi T. Watanabe Y. Suzuki K. Matsumoto T. Synlett  2006,  399 
  • 4b Yamauchi T. Watanabe Y. Suzuki K. Matsumoto T. Synthesis  2006,  2818 
  • For the OC-glycoside rearrangement, see:
  • 4c Matsumoto T. Katsuki M. Suzuki K. Tetrahedron Lett.  1988,  29:  6935 
  • 4d Matsumoto T. Hosoya T. Suzuki K. Synlett  1991,  709 
  • 4e Ben A. Yamauchi T. Matsumoto T. Suzuki K. Synlett  2004,  225 
  • 5 Resorcylic ester 3 was synthesized as shown below (Scheme 9). For the preparation of the intermediate 24, see: Hadfield A. Schweitzer H. Trova MP. Green K. Synth. Commun.  1994,  24:  1025 
  • Vancosaminyl acetate 4 was synthesized as shown below (Scheme 10).
  • 6a For the preparation of the intermediate 25, see: Hsu D.-S. Matsumoto T. Suzuki K. Synlett  2006,  469 
  • 6b For the selective alcoholysis of a benzoate by using Mg(OMe)2, see: Xu Y.-C. Bizuneh A. Walker C. Tetrahedron Lett.  1996,  37:  455 
  • 7 Angolosaminyl acetate 6 was synthesized as shown below (Scheme 11). For the preparation of the intermediate 27, see: Bartner P. Boxler DL. Brambilla R. Mallams AK. Morton JB. Reichert P. Sancilio FD. Surprenant H. Tomalesky G. J. Chem. Soc., Perkin Trans. 1  1979,  1600 
  • 9a Hosoya T. Ohashi Y. Matsumoto T. Suzuki K. Tetrahedron Lett.  1996,  37:  663 
  • 9b

    Also see reference 4e.

  • 11 Hey H. Arpe H.-J. Angew. Chem., Int. Ed. Engl.  1973,  12:  928 
  • 14 Hendrickson JM. Bergeron R. Tetrahedron Lett.  1973,  14:  4607 
  • 15a Gray M. Andrews IP. Hook DF. Kitteringham J. Voyle M. Tetrahedron Lett.  2000,  41:  6237 
  • 15b For a review on the Suzuki-Miyaura reaction, see: Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 16a Leeper FJ. Staunton J. J. Chem. Soc., Chem. Commun.  1978,  406 
  • 16b Dodd JH. Weinreb SM. Tetrahedron Lett.  1979,  20:  3593 
  • 16c Leeper FJ. Staunton J. J. Chem. Soc., Perkin Trans. 1  1984,  1053 
  • For recent applications to natural product synthesis, see:
  • 16d Donner CD. Tetrahedron Lett.  2007,  48:  8888 
  • 16e Sperry J. Brimble MA. Synlett  2008,  1910 
  • Iodoresorcinol 15 was synthesized as shown below (Scheme 14). For the preparation of the intermediate 33, see:
  • 17a Hamura T. Hosoya T. Yamaguchi H. Kuriyama Y. Tanabe M. Miyamoto M. Yasui Y. Matsumoto T. Suzuki K. Helv. Chim. Acta  2002,  85:  3589 
  • 17b Tsujiyama S. Suzuki K. Org. Synth.  2007,  84:  272 
  • 20a Matsumoto T. Hosoya T. Katsuki M. Suzuki K. Tetrahedron Lett.  1991,  32:  6735 
  • 20b For the generation and cycloadditions of the benzynes containing C-glycoside moieties, see: Matsumoto T. Hosoya T. Suzuki K. J. Am. Chem. Soc.  1992,  114:  3568 
  • 20c Matsumoto T. Yamaguchi H. Suzuki K. Tetrahedron  1997,  53:  16533 
  • 20d Futagami S. Ohashi Y. Imura K. Hosoya T. Ohmori K. Matsumoto T. Suzuki K. Tetrahedron Lett.  2000,  41:  1063 
  • 20e Matsumoto T. Yamaguchi H. Hamura T. Tanabe M. Kuriyama Y. Suzuki K. Tetrahedron Lett.  2000,  41:  8383 
8

The anomeric configurations in 5 and 11 (Figure  [²] ) were determined by the coupling constants of ¹H NMR spectra and NOE measurements. For details, see Supporting Information.

Figure 2

10

It is interesting to note that vancosaminyl acetate 4 upon reaction with excess resorcylic ester 29 (3 molar amounts) gave mono-C-glycoside 10 and bis-C-glycoside 30 in high combined yield without formation of the two-fold arylation product (Scheme  [¹²] ). In contrast, the reaction of angolosaminyl acetate 6 with 29 (2 molar amounts) gave none of the bis-C-glycoside but yielded mono-C-glycoside 31 (28% yield), the two-fold arylation product 32 (12%), and many other unidentified products of higher molecular weights. It is therefore obvious that the angolosamine moiety is much more apt to undergo the two-fold arylation, as compared with the vancosamine moiety. We surmise the steric congestion at the C(3) position in the vancosamine moiety makes it resistant to this unfavorable reaction.

12

Actually, treatment of bis-C-glycoside 11 with excess amounts of diol 29 under the Sc(OTf)3-Drierite conditions led to the complete recovery of 11 (Scheme  [¹³] ).

13

For determination of the regiochemistry, see Supporting Information.

18

The anomeric configurations in 16 and 18 (Figure  [³] ) were determined by the coupling constants of ¹H NMR and NOE measurements. For details, see Supporting Information.

Figure 3

19

So far, we have never encountered the two-fold arylation in the C-glycosylation of various 2-iodoresorcinol derivatives, regardless of the glycosyl donors (see references 4, 20b-d). Furthermore, it turned out that mono-C-glycosides 19 and 20 possessing the angolosamine moieties were recovered intact even after treatment with two molar amounts of diol 29 under the conditions with excess Sc(OTf)3 (Scheme  [¹5] ). These results, setting the reason aside, imply that susceptibility of the C-glycoside moiety to the two-fold arylation depends on the C(2)-substituent of the resorcinol moiety, in addition to the structure of the sugar moiety as described in reference 10.