Subscribe to RSS
DOI: 10.1055/s-0030-1258778
Stereoselective Synthesis of 4-Substituted 4-Hydroxypiperidines via Epoxidation-Ring Opening of 4-Methylenepiperidines
Publication History
Publication Date:
30 September 2010 (online)
Abstract
Reaction of 9-methylene-3-azabicyclo[3.3.1]nonanes with trifluoroperacetic acid results in stereoselective epoxidation to give the syn-epoxide. Intermolecular hydrogen bonding between the protonated tertiary amine and the peracid is responsible for the high levels of stereoselectivity.
Key words
stereoselective epoxidation - homoallylic epoxidation - bicyclic amines - 4-hydroxypiperidines
- 1
Maslowsaka-Lipowicz I.Figlus M.Zuiderveld OP.Walkczynski K. Arch. Pharm. Chem. Life Sci. 2008, 341: 762 - 2
Lu S.-F.Chen B.Davey D.Dunning L.Jaroch S.May K.Onuffer J.Phillips G.Subramanyam B.Tseng J.-L.Wei RG.Wei M.Ye B. Bioorg. Med. Chem. Lett. 2007, 1883 -
3a
Furegati S.Ganci W.Gorla F.Ringeisen U.Rüedi P. Helv. Chim. Acta 2004, 87: 2629 -
3b
Clerc C.Matarazzo I.Rüedi P. Helv. Chim. Acta 2009, 92: 14 - 4
Chen Z.Davies E.Miller WS.Shan S.Valenzano KJ.Kyle DJ. Bioorg. Med. Chem. Lett. 2004, 5275 -
5a
Wenzel B.Sorger D.Heinitz K.Scheunemann M.Schliebs R.Steinbach J.Sabri O. Eur. J. Med. Chem. 2005, 1197 -
5b
Kim D.-I.Schweri MM.Deutsch HM. J. Med. Chem. 2003, 46: 1456 -
5c
Sakhteman A.Foroumadi A.Sharifzadeh M.Amanlou M.Rayatnai F.Shafiee A. Bioorg. Med. Chem. 2009, 17: 6908 -
6a
Lehmann A.Brocke C.Barker D.Brimble MA. Eur. J. Org. Chem. 2006, 3205 -
6b
Williams CM.Heim R.Bernhardt PV. Tetrahedron 2005, 61: 3771 -
6c
Barker D.Brimble MA.McLeod MD.Savage GP. Org. Biomol. Chem. 2004, 2: 1659 -
6d
Kraus GA.Shi J. J. Org. Chem. 1991, 56: 4147 -
6e
Ho GD.Anthes J.Bercovici A.Caldwell JP.Cheng K.-C.Cui X.Fawzi A.Fernandez X.Greenlee WJ.Hey J.Korfmacher W.Lu SX.McLeod RL.Ng F.Torhan AS.Tan Z.Tulshian D.Varty GB.Xu X.Zhang H. Bioorg. Med. Chem. Lett. 2009, 19: 2519 - 7
House HO.Bryant WM. J. Org. Chem. 1965, 30: 3634 - 8
Chan Y.Guthmann H.Brimble MA.Barker D. Synlett 2008, 2601 - 9
Brimble MA.Brocke C. Eur. J. Org. Chem. 2005, 2385 - 10
Barker D.Lin DH.-S.Carland JE.Chu CP.-Y.Chebib M.Brimble MA.Savage GP.McLeod MD. Bioorg. Med. Chem. 2005, 13: 4565 - 11
Goodall KJ.Barker D.Brimble MA. Synlett 2005, 1809 -
13a
Carretero JC.Arrayás RG.de Gracia IS. Tetrahedron Lett. 1997, 38: 8537 -
13b
Aciro C.Claridge TDW.Davies SG.Roberts PM.Russell AJ.Thomson JE. Org. Biomol. Chem. 2008, 6: 3751 - 14
Quick J.Khandelwal Y.Meltzer PC.Weinberg JS. J. Org. Chem. 1983, 48: 5199 -
17a
Arias-Pérez MS.Alejo A.Maroto A. Tetrahedron 1997, 53: 13099 -
17b
Jeyaraman R.Jawaharsingh CB.Avila S.Eliel EL.Manoharan M.Morris-Natschke S. J. Heterocycl. Chem. 1982, 19: 449 -
17c
Goodall KJ.Brimble MA.Barker D. Magn. Reson. Chem. 2008, 46: 75 - 18
Guthmann H.Conole D.Wright E.Körber K.Barker D.Brimble MA. Eur. J. Org. Chem. 2009, 1944
References and Notes
After a 48 h reaction >80% N-oxide 24 was returned with the remaining material being unidentified decomposition products.
15
General Procedure
for the Epoxidation of 4-Methylenepiperidines
Trifluoroacetic
anhydride (6 equiv) was added dropwise to a stirred solution of
30% w/w H2O2 (5 equiv) in
CH2Cl2 (1 mL/mmol alkene) at 0 ˚C.
The solution was stirred for 1 h prior to the dropwise addition
of a solution of 4-methylene-piperidine (1 equiv) in CH2Cl2 (1
mL/mmol alkene). The mixture was allowed to warm to r.t.
and stirred for a further 4 h. The reaction was then quenched by
careful additon of sat. aq NaHCO3 and stirred until cessation
of bubbles occurred. The volatiles were then removed in vacuo and
the resultant aqueous solution extracted with EtOAc (2 × 20 mL).
The combined organic phase were washed with sat. aq NaHCO3,
H2O and brine, dried (MgSO4), and concentrated in
vacuo to afford the crude product, which was purified by flash chromatography.
Synthesis of Alcohol 39 from Epoxide 25
n-BuLi (1.6 M in hexanes, 0.6 mL, 0.95mmol)
was added dropwise to a suspension of copper cyanide (43 mg, 0.48 mmol)
in THF (0.5 mL) at -78 ˚C. The suspension
was allowed to warm to 0 ˚C and stirred for 30
min, cooled to -78 ˚C followed by dropwise
addition of epoxide 25 in THF (0.5 mL).
The solution was stirred for a further 15 min and quenched with
a 9:1 mixture of sat. aq NH4Cl and aq NH4OH and
concentrated in vacuo. The residue was dissolved in EtOAc, washed
with sat. aq NH4Cl, H2O and brine, then dried
(MgSO4), and concentrated in vacuo. The crude product
was purified by flash chromatography (5:1, hexanes-EtOAc; R
f
= 0.7)
to afford an alcohol (0.38 g, 89%) which was reduced with
LiAlH4 (58 mg, 2.2 mmol) in THF (2 mL) at 0 ˚C.
After stirring for 15 min the reaction, was quenched with sat. aq
Na2SO4 and filtered through Celite and the
solvent removed in vacuo. The residue was dissolved in EtOAc, washed
with H2O and brine, then dried (MgSO4) and
concentrated in vacuo to yield crude product which was purified
by flash chromatography (5:1, hexanes-EtOAc; R
f
= 0.2)
to give diol 39 (0.3g, 92%).
Spectroscopic
Data for Selected Products
Ethyl
(1
R*,
2′
S*,
5
R*
)-3-Benzyl-3-azaspiro[bicyclo-[3.3.1]nonane-9,2′-oxirane]-1-carboxylate
(25)
¹H NMR (300 MHz, CDCl3): δ = 1.21
(3 H, t, J = 7.2
Hz, OCH2CH
3), 1.26-1.31
(1 H, m, 5-H), 1.56-1.64 (1 H, m,
7A-H),
1.77-2.01 (3 H, m, 8A-H, 6-CH
2
), 2.24 (1 H, ddt, J = 13.5,
6.6, 2.1 Hz, 8B-H), 2.51 (1 H, d, J = 3.0
Hz, 4A-H), 2.55 (1 H, d, J = 4.8
Hz, 2′A-H), 2.87 (3 H, m, 7B-H, 2A-H, 4B-H),
3.05 (1 H, d, J = 11.7
Hz, 2B-H), 3.18 (1 H, d, J = 4.8 Hz,
2′B-H), 3.43 (1 H, d, J = 13.5
Hz, PhCHA), 3.53 (1 H, d, J = 13.5
Hz, PhCHB), 4.06 (2 H, dq, J = 7.2,
1.5 Hz, OCH2CH
3),
7.23-7.35 (5 H, m, ArH). ¹³C
NMR (75 MHz, CDCl3): δ = 14.0
(OCH2
CH3), 21.0
(C-7), 31.1 (C-6), 34.8 (C-8), 38.5 (C-5), 46.9 (C-1), 52.91 (C-2′),
56.3 (C-4), 58.5 (C-2), 60.7 (OCH2CH3),
62.2 (C-9), 63.3 (PhCH2),
126.8 (ArCH), 128.2 (ArCH), 128.7 (ArCH), 138.4 (ArC), 172.5 (C=O).
ESI-MS: m/z (%) = 316
(100) [M+], 338 (20) [MNa+].
MS: m/z calcd for C19H26NO3:
316.1907 [M]+; found: 316.1912.
Ethyl (1
R*
,2′
S*
,6
R*
)-8-Benzyl-8-azaspiro[bicyclo-[4.3.1]decane-10,2′-oxirane]-1-carboxylate
(28)
¹H NMR (300 MHz, CDCl3): δ = 1.22
(3 H, t, J = 7.2
Hz, OCH2CH
3), 1.41-1.51
(1 H, m, 6-H, 6-CH
2
), 1.56-1.77
(5 H, m, 2A-H, 5-H2, 3-CH2), 1.92-2.16
(3 H, m, 4-CH
2, 2B-H), 2.47
(2 H, dd, J = 11.1,
4.5 Hz, 7A-H), 2.52 (1 H, d, J = 4.8 Hz,
2′A-H), 2.64 (1 H, td, J = 12.0,
0.9 Hz, 7B-H), 2.71 (2 H, m, 9-CH2),
3.31 (1 H, d, J = 4.8
Hz, 2′B-H), 3.53 (2 H, s, PhCH
2),
4.06 (2 H, q, J = 7.2
Hz, OCH2CH
3), 7.25-7.38
(5 H, m, Ar-H). ¹³C NMR (75 MHz, CDCl3): δ = 14.0 (OCH2
CH3), 26.4 (C-5), 26.5 (C-4),
33.0 (C-3), 35.8 (C-2), 42.2 (C-6), 50.1 (C-1), 51.6 (C-2′),
57.8 (C-7), 58.7 (C-10), 60.4 (C-9), 60.6 (OCH2CH3),
63.5 (PhCH2), 127.0 (ArCH), 128.2
(ArCH), 129.1 (ArCH), 138.9 (ArC), 173.6 (C=O). ESI-MS: m/z (%) = 330
(100) [M+], 352 (22) [MNa+].
MS: m/z calcd for C20H27NO3:
330.2064 [M+]; found 330.2074.
(1
S*
,5
R
*,9
S
*)-3-Benzyl-1-(hydroxymethyl)-9-methyl-3-azabicyclo[3.3.1]nonan-9-ol
(29)
¹H NMR (300 MHz, CDCl3): δ = 1.23-1.32
(1 H, m, 7A-H), 1.35 (3 H, s, 9-CH3) 1.42-1.58
(3 H, m, 6-CH2, 8A-H), 1.67-1.79
(2 H, m, 5-H, 8B-H), 2.30-2.47 (3 H, m, 2A-H,
4 A-H, 7B-H), 2.93 (1 H, dd, J = 10.8,
2.4 Hz, 4B-H), 3.10-3.18 (3 H, m, CH
AOH, 2B-H, OH),
3.41 (1 H, d, J = 13.2
Hz, Ph-CH
A), 3.58 (1 H, d, J = 13.2 Hz,
PhCH
B), 3.80 (1 H, d, J = 11.1,
2.4 Hz, CH
BOH). ¹³C
NMR (75 MHz, CDCl3): δ = 18.2
(C-6), 22.1 (C9-CH3), 28.3
(C-8), 32.0 (C-7), 39.0 (C-1), 41.4 (C-5), 54.2 (C-4), 57.1 (C-2),
62.8 (PhCH2), 70.0 (CH2OH),
74.0 (C-9), 127.0 (ArCH), 128.3 (ArCH), 128.7 (ArCH), 138.7 (ArC).
ESI-MS: m/z (%) = 276
(100) [MH+]. MS: m/z calcd for C17H26NO2:
276.1958 [MH+]; found: 276.1941.
(1
S
*,6
R
*,10
S
*)-8-Benzyl-1-(hydroxymethyl)-10-methyl-8-azabicyclo[4.3.1]decan-10-ol
(32)
¹H NMR (300 MHz, CDCl3): δ = 1.23-1.60
(7 H, m, 6-H, 5-CH2, 4-CH2, 3-CH2),
1.42 (3 H, s, 10-CH3) 2.08-2.15 (2 H, m, 2-CH2),
2.24 (1 H, dd, J = 11.1,
1.0 Hz, 9A-H), 2.42 (1 H, dd, J = 11.4,
1.0 Hz, 7A-H), 2.78 (1 H, dd, J = 11.4,
6.3 Hz, 7B-H), 3.16-3.24 (3 H, m, CH
AOH, 9B-H, OH),
3.39 (1 H, d, J = 13.2
Hz, PhCH
A), 3.56 (1 H, d, J = 13.2 Hz,
PhCH
B), 3.89 (1 H, d, J = 11.1,
2.4 Hz, CH
BOH). ¹³C
NMR (75 MHz, CDCl3): δ = 23.16
(C10-CH3), 25.2, 25.3, 29.6,
and 35.5 (C-2, C-3, C-4, C-5), 44.1 (C-1), 46.3 (C-6), 56.5 (C-7),
59.0 (C-9) 63.3 (PhCH2), 70.3
(CH2OH), 77.9 (C-10), 127.0 (ArCH), 128.2 (ArCH), 128.9
(ArCH), 138.7 (ArC). ESI-MS: m/z (%) = 290
(100) [MH+], 272 (5) [M - OH].
MS:
m/z calcd for
C18H28NO2: 290.2115 [MH+];
found: 290.2105.
1-{(1
R
*,2"
S*
,5
R
*)-3-Benzyl-3-azaspiro[bicyclo-[3.3.1]nonane-9,2"-oxirane]-1-yl}ethanone
(36)
¹H NMR (400 MHz, CDCl3): δ = 1.27-1.29
(1 H, m, 5-H), 1.62 (1 H, m, 7A-H), 1.74-1.83
(2 H, m, 8A-H, 6A-H), 1.92 (1 H, m, 6B-H),
2.09 (3 H, s, O=CCH3), 2.18 (1 H, m, 8B-H), 2.54
(1 H, d, J = 4.2
Hz, 2′A-H), 2.63 (1 H, m, 4B-H),
2.69 (1 H, d, J = 4.2
Hz, 2′B-H), 2.83 (1 H, m 7B-H), 2.90
(1 H, d, J = 11.4
Hz, 4B-H), 2.94-3.00 (2 H, m, 2-CH2),
3.50 (2 H, s, PhCH
2), 7.23-7.34
(5 H, m, ArH). ¹³C NMR (75 MHz, CDCl3): δ = 21.1
(C-7), 29.5 (O=CCH3),
31.1 (C-6), 33.1 (C-8), 38.6 (C-5), 51.1 (C-1), 52.3 (C-2′),
56.6 (C-4), 59.2 (C-2), 62.7 (C-9), 63.5 (PhCH2),
127.0 (ArCH), 128.3 (ArCH), 128.6 (ArCH), 138.7 (ArC), 209.9 (C=O).
ESI-MS: m/z (%) = 285
(100) [M+]. MS: m/z calcd for C18H23NO2: 285.1728 [M+];
found: 285.1728.
(1
S
*,5
R
*,9
S
*)-3-Benzyl-1-(hydroxymethyl)-9-pentyl-3-azabicyclo[3.3.1]nonan-9-ol
(39)
¹H NMR (300 MHz, CDCl3): δ = 0.86-0.94 [4
H, m, (CH2)4CH
3,
CH2CH
A(CH2)2CH3),
1.15-1.60 [10 H, m, 6-CH2, 8A-H,
CH
2
(CH2)3CH3,
CH2CH
B(CH2)2CH3, (CH2)2CH
2CH2CH3,
(CH2)3CH
2CH3],
1.81-1.90 (2 H, m, 5-H, 8B-H), 2.34 (1 H, d, J = 10.8 Hz,
CH
AOH), 2.36-2.52
(3 H, m, 4A-H, 7A-H, OH), 2.50 (1 H, dd, J = 11.0 Hz,
2A-H), 2.85 (1 H, dd, J = 11.4,
2.1 Hz, 4B-H), 3.04 (1 H, d, J = 10.8 Hz,
CH
BOH), 3.12 (1 H, dd, J = 11.4,
2.1 Hz 2B-H), 3.38 (1 H, d, J = 13.2,
PhCH
A), 3.54 (1 H, d, J = 13.2 Hz,
PhCH
B), 7.19-7.28
(5 H, m, ArH). ¹³C NMR (75 MHz, CDCl3): δ = 14.1 [(CH2)4
CH3], 18.7 (C-7),
21.5 [CH2
(CH2)3CH3], 22.7 [CH2
CH2
(CH2)2CH3],
27.8 (C-6), 31.7 [(CH2)2
CH2CH2CH3],
32.5 [(CH2)3
CH2CH3],
32.5 (C-8), 35.9 (C-5), 40.9 (C-1), 54.3 (C-4), 57.3 (C-2), 62.9
(PhCH2), 69.4 (CH2OH),
76.0 (C-9), 126.8 (ArCH), 128.2 (ArCH), 128.7 (ArCH), 139.0 (ArC).
ESI-MS: m/z (%) = 332
(100) [MH+]. MS: m/z calcd for C21H34NO2:
332.2584 [MH+]; found: 332.2590.
The stereochemistry was again determined by analysis of the ring-opened tertiary alcohols.
20Diols such as 29, 32, and 39 can be esterified selectively in high yields at the primary alcohol.