Subscribe to RSS
DOI: 10.1055/s-0030-1258801
Highly Efficient Friedel-Crafts Alkylation of Indoles and Pyrrole Catalyzed by Mesoporous 3D Aluminosilicate Catalyst with Electron-Deficient Olefins
Publication History
Publication Date:
30 September 2010 (online)

Abstract
The C3-selective Friedel-Crafts alkylation of indoles with electron-deficient olefins has been achieved using a mesoporous aluminosilicate catalyst with 3D cage-type porous structure to furnish the 3-alkylindole derivatives in excellent yields due to its high surface area, large pore volume and high acidity. Pyrrole also reacted efficiently under similar reaction conditions to give the corresponding 2-alkylated pyrrole derivatives in good yields.
Key words
nanoporous aluminosilicate - conjugate addition - electron-deficient olefins - C3-alkylation of indoles - C2-alkylation of pyrrole
- Supporting Information for this article is available online:
- Supporting Information
- 1
Tabata N.Tomoda H.Takahashi Y.Haneda K.Iwai Y.Woodruff HB.Omura S. J. Antibiot. 1993, 46: 756 - 2
Moore RE.Cheuk C.Patterson GML. J. Am. Chem. Soc. 1984, 106: 6456 - 3
Moore RE.Cheuk C.Yang X.-QG.Patterson GML.Bonjouklian R.Smitka TA.Mynderse JS.Foster RS.Jones ND.Swartzendruber JK.Deeter JB. J. Org. Chem. 1987, 52: 1036 -
4a
Szmuszkovicz J. J. Am. Chem. Soc. 1957, 79: 2819 -
4b
Noland WE.Christensen GM.Sauer GL.Dutton GGS. J. Am. Chem. Soc. 1955, 77: 456 -
4c
Iqbal Z.Jackson AH.Rao KRN. Tetrahedron Lett. 1988, 29: 2577 -
4d
Azizi N.Arynasab F.Saidi MR. Org. Biomol. Chem. 2006, 4: 4275 -
4e
Li D.-P.Guo Y.-C.Ding Y.Xiao W.-J. Chem. Commun. 2006, 799 -
4f
Silvanus AC.Heffernan SJ.Liptrot DJ.Kociok-Köhn G.Andrews BI.Carbery DR. Org. Lett. 2009, 11: 1175 -
5a
Kobayashi S.Hachiya I.Takahori T.Araki M.Ishitani H. Tetrahedron Lett. 1992, 33: 6815 -
5b
Kobayashi S. Synlett 1994, 689 -
5c
Harrington PE.Kerr MA. Synlett 1996, 1047 -
5d
Mori Y.Kakumoto K.Manabe K.Kobayashi S. Tetrahedron Lett. 2000, 41: 3107 -
5e
Yadav JS.Abraham S.Reddy BVS.Sabitha G. Synthesis 2001, 2165 -
5f
Bandini M.Melchiorre P.Melloni A.Umani-Ronchi A. Synthesis 2002, 1110 -
5g
Bandini M.Cozzi PG.Giacomini M.Melchiorre P.Selva S.Umani-Ronchi A. J. Org. Chem. 2002, 67: 3700 -
5h
Alam MM.Varala R.Adapa SR. Tetrahedron Lett. 2003, 44: 5115 -
5i
Srivastava N.Banik BK. J. Org. Chem. 2003, 68: 2109 -
6a
Austin JF.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 1172 -
6b
Blay G.Fernández I.Pedro JR.Vila C. Org. Lett. 2007, 9: 2601 -
6c
Bandini M.Fagioli M.Melchiorre P.Melloni A.Umani-Ronchi A. Tetrahedron Lett. 2003, 44: 5843 -
6d
Jensen KB.Thorhauge J.Hazell RG.Jorgensen KA. Angew. Chem. Int. Ed. 2001, 40: 160 -
6e
Scettri A.Villano R.Acocella MR. Molecules 2009, 14: 3030 -
7a
Bartoli G.Bartolacci M.Bosco M.Foglia G.Giuliani A.Marcantoni E.Sambri L.Torregiani E.
J. Org. Chem. 2003, 68: 4594 -
7b
Zhan Z.-P.Yang R.-F.Lang K. Tetrahedron Lett. 2005, 46: 3859 -
7c
Yadav JS.Reddy BVS.Baishya G.Reddy KV.Narsaiah AV. Tetrahedron 2005, 61: 9541 -
7d
Huang ZH.Zou JP.Jiang WQ. Tetrahedron Lett. 2006, 47: 7965 -
7e
Kumar V.Kaur S.Kumar S. Tetrahedron Lett. 2006, 47: 7001 -
7f
Ko S.Lin C.Tu Z.Wang YF.Wang CC.Yao CF. Tetrahedron Lett. 2006, 47: 487 -
7g
Firouzabadi H.Iranpoor N.Nowrouzi F. Chem. Commun. 2005, 789 -
8a
Chakravarti R.Kalita P.Selvan ST.Oveisi H.Balasubramanian VV.Kantam ML.Vinu A. Green Chem. 2010, 12: 49 -
8b
Shobha D.Chari MA.Mano A.Selvan ST.Mukkanti K.Vinu A. Tetrahedron 2009, 65: 10608 -
8c
Vinu A.Kalita P.Balasubramanian VV.Oveisi H.Selvan ST.Mano A.Chari MA.Reddy BVS. Tetrahedron Lett. 2009, 50: 7132 -
9a
Chakravarti R.Oveisi H.Kalita P.Pal RR.Halligudi SB.Kantam ML.Vinu A. Micropor. Mesopor. Mater. 2009, 123: 338 -
9b
Balasubramanian VV.Srinivasu P.Anand C.Pal RR.Ariga K.Velmathi S.Alam S.Vinu A. Micropor. Mesopor. Mater. 2008, 114: 303 -
9c
Shobha D.Chari MA.Selvan ST.Oveisi H.Mano A.Mukkanti K.Vinu A. Micropor. Mesopor. Mater. 2010, 129: 112 -
9d
Chari MA.Karthikeyan G.Pandurangan A.Naidu TS.Sathyaseelan B.Zaidi SMJ.Vinu A. Tetrahedron Lett. 2010, 51: 2629
References and Notes
General Procedure.
A mixture of activated olefin (1.0 mmol), indole or pyrrole (1.0
mmol) and AlKIT-5 (100 mg) in DCE (5 mL) was stirred at reflux temperature
for the appropriate time (Table
[¹]
).
After completion of the reaction, as monitored by TLC, the reaction
mixture was diluted with EtOAc (20 mL) and the catalyst was separated
by filtration. The organic layer was concentrated under reduced
pressure and the crude product was purified by silica gel column chromatography
using EtOAc-n-hexane (1:9) as
eluent to afford the pure 3-alkylindole or 2-alkylpyrrole. The spectral data
are in full agreement with the data reported in the literature.5 Spectral
data for the selected products: 2-Phenyl-3-indolyl-1-nitroethane(3g): ¹H NMR (300 MHz,
CDCl3):
δ = 4.91-5.12
(m, 2 H), 5.22 (t, J = 7.0 Hz,
1 H), 7.01 (d, J = 2.2 Hz, 1
H), 7.07-7.37 (m, 8 H), 7.47 (d, 1 H, J = 8.0
Hz, 1 H), 8.06 (br s, 1 H, NH). ¹³C
NMR (75 MHz, CDCl3): δ = 40.9, 78.4,
110.6, 118.7, 120.2, 121.9, 123.0, 126.3, 127.9, 128.2, 129.1, 135.8,
140.2. EIMS: m/z (%) = 266
(100) [M+]. 2-Phenyl-2-pyrrolyl-1-nitroethane
(3m): ¹H NMR (300 MHz,
CDCl3): δ = 4.76 (dd, J = 11.6,
7.4 Hz, 1 H), 4.86 (dd, J = 7.4,
7.1 Hz, 1 H), 4.96 (dd, J = 11.6,
7.1 Hz, 1 H), 6.03-6.05 (m, 1 H), 6.14 (dd, J = 6.0, 2.7 Hz, 1 H), 6.40
(dd, J = 4.0, 2.5 Hz, 1 H),
7.20-7.31 (m, 5 H), 7.85 (s, 1 H). ¹³C
NMR (75 MHz, CDCl3): δ = 137.9, 129.2,
128.9, 128.0, 127.9, 118.2, 108.6, 105.8, 79.2, 42.9. EIMS: m/z (%) = 216
(30) [M+], 169 (100).