Subscribe to RSS
DOI: 10.1055/s-0030-1259024
Synthesis of Highly Substituted Symmetrical 1,3-Dienes via Tandem Carbocupration and Organocuprate Oxidation
Publication History
Publication Date:
03 November 2010 (online)
Abstract
A ‘one-pot’ tandem carbocupration/organocuprate oxidation allows the formation of highly substituted symmetrical 1,3-dienes from alkynyl esters and alkyl organolithium or Grignard reagents with three C-C bonds being formed in one step.
Key words
cuprates - oxidation - carbocupration - 1,3-diene - tandem reaction
-
1a
Tarnchompoo B.Thebtaranonth C.Thebtaranonth Y. Tetrahedron Lett. 1987, 28: 6671 -
1b
Tarnchompoo B.Thebtaranonth C.Thebtaranonth Y. Tetrahedron Lett. 1987, 28: 6675 -
1c
Kotera M.Lehn J.-M.Vigneron J.-P. Tetrahedron 1995, 51: 1953 - For recent examples of the synthesis of 2,3-bis(alkylidene)succinate compounds, see:
-
2a
Kiji J.Okano T.Fujii E.Tsuji J. Synthesis 1997, 869 -
2b
Béji F.Lebreton J.Villiéras J.Amri H. Tetrahedron 2001, 57: 9959 -
2c
Béji F.Lebreton J.Villiéras J.Amri H. Synth. Commun. 2002, 32: 3273 -
2d
Patel RM.Argade NP. J. Org. Chem. 2007, 72: 4900 -
3a
Surry DS.Su X.Fox DJ.Franckevicius V.Macdonald SJF.Spring DR. Angew. Chem. Int. Ed. 2005, 44: 1870 -
3b
Surry DS.Fox DJ.Macdonald SJF.Spring DR. Chem. Commun. 2005, 2589 -
3c
Su X.Fox DJ.Blackwell DT.Tanaka K.Spring DR. Chem. Commun. 2006, 3883 -
3d
Su X.Surry DS.Spandl RJ.Spring DR. Org. Lett. 2008, 10: 2593 -
3e
Su X.Thomas GL.Galloway WRJD.Surry DS.Spandl RJ.Spring DR. Synthesis 2009, 3880 - For reviews, see:
-
4a
Surry DS.Spring DR. Chem. Soc. Rev. 2006, 35: 218 -
4b
Aves SJ.Spring DR. In The Chemistry of Organocopper CompoundsRappoport Z.Marek I. Wiley; Chichester: 2009. p.585 - 5
Corey EJ.Katzenellenbogen JA. J. Am. Chem. Soc. 1969, 91: 1851 - 6
Marino JP.Linderman RJ. J. Org. Chem. 1983, 48: 4621 - 7
Ito Y.Konoike T.Harada T.Saegusa T. J. Am. Chem. Soc. 1977, 99: 1487 - For examples of carbonyl enolate couplings, see:
-
8a
Baran PS.Guerrero CA.Ambhaikar NB.Hafensteiner BD. Angew. Chem. Int. Ed. 2005, 44: 606 -
8b
Baran PS.DeMartino MP. Angew. Chem. Int. Ed. 2006, 45: 7083 -
9a
Siddall JB.Biskup M.Fried JH. J. Am. Chem. Soc. 1969, 91: 1853 -
9b
Klein J.Turkel RM. J. Am. Chem. Soc. 1969, 91: 6186 - 10
Nilsson K.Andersson T.Ullenius C.Gerold A.Krause N. Chem. Eur. J. 1998, 4: 2051 -
11a
Normant JF.Cahiez G.Chuit C.Villieras J.
J. Organomet. Chem. 1974, 77: 269 -
11b For a different oxidation
pathway following carbocupration, see:
Zhang DH.Ready JM. Org. Lett. 2005, 7: 5681 - 13
Taylor RJK. In Organocopper Reagents: A Practical ApproachTaylor RJK. Oxford University Press; Oxford: 1994. p.13 - 14
Lipshutz BH. In Organometallics in Synthesis: A ManualSchlosser M. Wiley; Chichester: 2002. 2nd ed.. p.665 - 15
van Koten G.James SL.Jastrzebski JTBH. In Comprehensive Organometallic Chemistry II Vol. 3:Abel EW.Stone FGA.Wilkinson G.Wardell JL. Pergamon; Oxford: 1995. p.57 - For recent reviews on DOS, see:
-
17a
Schreiber SL. Nature (London) 2009, 457: 153 -
17b
Galloway WRJD.Spring DR. Expert Opin. Drug Discovery 2009, 4: 467 -
17c
Nielsen E.Schreiber SL. Angew. Chem. Int. Ed. 2008, 47: 48 -
17d
Spandl R.Bender A.Spring DR. Org. Biomol. Chem. 2008, 6: 1149 -
17e
Spandl R.Diaz-Gavilan M.O’Connell KMG.Thomas GL.Spring DR. Chem. Rec. 2008, 8: 129 - 18
Maercker A.van de Flierdt J.Girreser U. Tetrahedron 2000, 56: 3373
References and Notes
Oxidant-derived by-products can easily be removed by an acidic wash during workup or by filtration through a pad of silica gel.
16
General Procedure
for Tandem Carbocupration/Oxidation Reaction: A solution
of the requisite organometallic reagent (2.10 mmol) was added to
a suspension of CuBr˙SMe2 (216 mg, 1.05 mmol)
in THF
(4 mL) at -78 ˚C and stirred
for 30 min. Alkyne (2.00 mmol) was added dropwise and the reaction
was stirred for 3 h at
-78 ˚C. A solution
of oxidant 5 (589 mg, 2.00 mmol) in THF (4
mL) was added, the reaction was allowed to stir at -78 ˚C for
30 min and then allowed to warm to r.t. over 1 h. The resulting
solution was filtered through a plug of silica, eluting with either
PE-Et2O (1:1) or i-hexane-Et2O
(1:1) and the solvent was removed in vacuo. The residue was purified
by flash column chromatography.
(2
E
,3
E
)-Diethyl 2,3-dipentylidenesuccinate (8a): colourless oil; R
f
0.25 (PE-EtOAc, 10:1).
IR (Neat): 2957, 2932, 2871, 1712 (C=O), 1631 (C=C),
1464, 1363, 1231, 1206 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.01 (t,
2 H,
J = 7.6 Hz),
4.16 (q, 4 H, J = 7.1 Hz), 2.02
(app q, 4 H, J = 7.2 Hz), 1.36-1.46
(m, 4 H), 1.26-1.36 (m, 4 H), 1.24 (t, 6 H, J = 7.1 Hz), 0.90 (t, 6 H, J = 7.2 Hz). ¹³C
NMR (125 MHz, CDCl3): δ = 166.5 (C),
146.3 (CH), 127.6 (C), 60.5 (CH2), 30.3 (CH2),
29.3 (CH2), 22.4 (CH2), 14.2 (Me), 13.8 (Me). HRMS
(ESI): m/z [M + H]+ calcd
for C18H31O4: 311.2217; found:
311.2217.
(2
Z
,3
Z
)-Dimethyl 2,3-bis(1-phenylpentylidene)succinate (8b): colourless crystals; mp 60-64 ˚C
(i-hexane-EtOAc); R
f
0.13
(PE-EtOAc, 10:1). IR (CDCl3): 2957, 2871, 1717 (C=O),
1429, 1305, 1219, 1166, 1022 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.28-7.39
(m, 6 H), 7.18-7.23 (m, 4 H), 3.45 (s, 6 H), 2.53 (m, 4
H), 1.18-1.32 (m, 8 H), 0.83 (t, 6 H, J = 6.7
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 168.0
(C), 154.0 (C), 141.2 (C), 128.0 (CH), 127.3 (CH), 127.1 (CH), 126.5
(C), 51.5 (Me), 36.1 (CH2), 29.1 (CH2), 22.9
(CH2), 13.9 (Me). HRMS (ESI): m/z [M + Na]+ calcd
for C28H34O4Na: 457.2349; found:
457.2368.
(2
E
,3
E
)-Diethyl 2,3-di(hexan-2-ylidene)succinate (8c): colourless oil; R
f
0.37 (PE-EtOAc, 10:1).
IR (CDCl3): 2957, 2927, 2867, 1709 (C=O), 1613
(C=C), 1459, 1206, 1092, 1039 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 4.11 (q,
4 H,
J = 7.1 Hz),
2.13 (s, 6 H), 2.04 (br s, 4 H), 1.32-1.40 (m, 4 H), 1.22-1.29
(m, 4 H), 1.21 (t, 6 H, J = 7.1
Hz), 0.86 (t, 6 H, J = 7.3 Hz). ¹³C
NMR (125 MHz, CDCl3): δ = 167.6 (C), 152.7
(C), 125.2 (C), 59.8 (CH2), 37.0 (CH2), 29.1
(CH2), 22.8 (CH2), 19.7 (Me), 14.2 (Me), 13.9
(Me). HRMS (ESI): m/z [M + Na]+ calcd
for C20H34O4Na: 361.2349; found: 361.2348.
(2
E
,3
E
)-Diethyl 2,3-bis(2-methylpropylidene)succinate (8d): yellow oil; R
f
0.28 (PE-EtOAc, 10:1).
IR (CDCl3): 2963, 2872, 1712 (C=O), 1231, 1038,
731 cm-¹. ¹H NMR (400
MHz, CDCl3): δ = 6.77 (d, 2 H, J = 10.7 Hz), 4.15 (q, 4 H, J = 7.1 Hz), 2.35 (m, 2 H),
1.22 (t, 6 H, J = 7.1 Hz), 0.96 (m,
12 H). ¹³C NMR (125 MHz, CDCl3): δ = 166.6
(C), 151.9 (CH), 125.2 (C), 60.6 (CH2), 29.0 (CH), 21.4
(Me), 14.2 (Me). HRMS (ESI): m/z [M + Na]+ calcd
for C16H26O4Na: 305.1723; found:
305.1708.
(2
Z
,3
Z
)-Dimethyl 2,3-bis(1-phenylethylidene)succinate (8e): white amorphous solid; R
f
0.04
(PE-EtOAc, 10:1). IR (CDCl3): 2950, 1712 (C=O),
1433, 1221, 1199, 1043, 907, 720, 699 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.15-7.29 (m,
10 H), 3.37 (s, 6 H), 2.10 (s, 6 H). ¹³C
NMR (125 MHz, CDCl3): δ = 167.6 (C),
149.8 (C), 142.5 (C), 128.0 (CH), 127.5 (CH), 127.1 (C), 126.5 (CH),
51.4 (Me), 23.0 (Me). HRMS (ESI): m/z [M + H]+ calcd
for C22H23O4: 351.1596; found:
351.1601.
Diethyl 2,3-di(propan-2-ylidene)succinate (8f): colourless oil; R
f
0.31 (PE-EtOAc, 10:1).
IR (CDCl3): 2982, 2911, 1709 (C=O), 1625 (C=C),
1444, 1220, 1076 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 4.12 (q,
4 H, J = 7.1 Hz), 2.16 (s,
6
H), 1.72 (s, 6 H), 1.22 (t, 6 H, J = 7.1
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 167.4
(C), 149.1 (C), 125.7 (C), 59.9 (CH2), 23.7 (Me), 22.1
(Me), 14.2 (Me). LCMS (ES+):
m/z = 255 [M + H]+.
Spectroscopic data were consistent with the literature values.¹8