Abstract
The cationic gold(I)-catalyzed reaction of 1-alkynyl-2-allylsilylbenzenes
with water results in intramolecular allylation of the alkynes via
7-exo -dig cyclization to give 1,4-dienes
in good yield with excellent stereoselectivities.
Key words
catalysis - 1,4-dienes - allylation - allylsilanes - gold
References and Notes
<A NAME="RU06410ST-1A">1a </A>
Durand S.
Parrain J.-L.
Santelli M.
J. Chem. Soc., Perkin Trans.
1
2000,
253
<A NAME="RU06410ST-1B">1b </A>
Andrey O.
Glanzmann C.
Landais Y.
Parra-Rapado L.
Tetrahedron
1997,
53:
2835
<A NAME="RU06410ST-1C">1c </A>
Nicolaou KC.
Ramphal JY.
Petasis NA.
Serhan CN.
Angew.
Chem. Int. Ed.
1991,
30:
1100
<A NAME="RU06410ST-1D">1d </A>
Gadikota RR.
Keller AI.
Callam CS.
Lowary TL.
Tetrahedron:
Asymmetry
2003,
14:
737
Selected recent examples
<A NAME="RU06410ST-2A">2a </A>
Akiyama K.
Gao F.
Hoveyda AH.
Angew.
Chem. Int. Ed.
2010,
49:
419
<A NAME="RU06410ST-2B">2b </A>
Matsubara R.
Jamison TF.
J. Am. Chem. Soc.
2010,
132:
6880
<A NAME="RU06410ST-2C">2c </A>
Moreau B.
Wu JY.
Ritter T.
Org.
Lett.
2009,
11:
337
<A NAME="RU06410ST-2D">2d </A>
Trost BM.
Martos-Redruejo A.
Org. Lett.
2009,
11:
1071
Transition-metal-catalyzed allylmetalation,
for Al, see:
<A NAME="RU06410ST-3A">3a </A>
Miller JA.
Negishi E.-I.
Tetrahedron
Lett.
1984,
25:
5863
For Mg:
<A NAME="RU06410ST-3B">3b </A>
Rein FW.
Richey HG.
Tetrahedron
Lett.
1971,
12:
3777
<A NAME="RU06410ST-3C">3c </A>
Okada K.
Oshima K.
Utimoto K.
J.
Am. Chem. Soc.
1996,
118:
6076
<A NAME="RU06410ST-3D">3d </A>
Tang J.
Okada K.
Shinokubo H.
Oshima K.
Tetrahedron
1997,
53:
5061
<A NAME="RU06410ST-3E">3e </A>
Anastasia L.
Dumond
YR.
Negishi E.-I.
Eur. J. Org. Chem.
2001,
3039
For In:
<A NAME="RU06410ST-3F">3f </A>
Araki S.
Imai A.
Shimizu K.
Butsugan Y.
Tetrahedron Lett.
1992,
33:
2581
<A NAME="RU06410ST-3G">3g </A>
Araki S.
Imai A.
Shimizu K.
Yamada M.
Mori A.
Butsugan Y.
J. Org. Chem.
1995,
60:
1841
<A NAME="RU06410ST-3H">3h </A>
Fujiwara N.
Yamamoto Y.
J. Org. Chem.
1997,
62:
2318
<A NAME="RU06410ST-3I">3i </A>
Klaps E.
Schmid W.
J. Org. Chem.
1999,
64:
7537
For Sn:
<A NAME="RU06410ST-3J">3j </A>
Asao N.
Matsukawa Y.
Yamamoto Y.
Chem.
Commun.
1996,
1513
<A NAME="RU06410ST-3K">3k </A>
Miura K.
Itoh D.
Hondo T.
Saito H.
Ito H.
Hosomi A.
Tetrahedron
Lett.
1996,
37:
8539
<A NAME="RU06410ST-3L">3l </A>
Matsukawa Y.
Asao N.
Kitahara H.
Yamamoto Y.
Tetrahedron
1999,
55:
3779
<A NAME="RU06410ST-3M">3m </A>
Shirakawa E.
Yamasaki K.
Yoshida H.
Hiyama T.
J. Am. Chem. Soc.
1999,
121:
10221
<A NAME="RU06410ST-3N">3n </A>
Shirakawa E.
Yoshida H.
Nakao Y.
Hiyama T.
Org. Lett.
2000,
2:
2209
For Zn:
<A NAME="RU06410ST-3O">3o </A>
Knochel P.
Normant JF.
Tetrahedron Lett.
1984,
25:
1475
<A NAME="RU06410ST-3P">3p </A>
Nishikawa T.
Yorimitsu H.
Oshima K.
Synlett
2004,
1573
Lewis acid catalyzed allylsilylation,
see:
<A NAME="RU06410ST-4A">4a </A>
Yeon SH.
Han JH.
Hong E.
Do Y.
Jung IN.
J. Organomet. Chem.
1995,
499:
159
<A NAME="RU06410ST-4B">4b </A>
Asao N.
Yoshikawa E.
Yamamoto Y.
J.
Org. Chem.
1996,
61:
4874
<A NAME="RU06410ST-4C">4c </A>
Yoshikawa E.
Gevorgyan V.
Asao N.
Yamamoto Y.
J. Am. Chem. Soc.
1997,
119:
6781
<A NAME="RU06410ST-4D">4d </A>
Imamura K.
Yoshikawa E.
Gevorgyan V.
Yamamoto Y.
J. Am. Chem. Soc.
1998,
120:
5339
<A NAME="RU06410ST-4E">4e </A>
Asao N.
Tomeba H.
Yamamoto Y.
Tetrahedron
Lett.
2005,
46:
27
<A NAME="RU06410ST-4F">4f </A>
Asao N.
Yamamoto Y.
Bull. Chem. Soc. Jpn.
2000,
73:
1071
Gold-catalyzed reactions of allylsilanes
with electrophiles, see:
<A NAME="RU06410ST-5A">5a </A>
Georgy M.
Boucard V.
Campagne J.-M.
J.
Am. Chem. Soc.
2005,
127:
14180
<A NAME="RU06410ST-5B">5b </A>
Lin C.-C.
Teng T.-M.
Odedra A.
Liu R.-S.
J. Am. Chem. Soc.
2007,
129:
3798
<A NAME="RU06410ST-5C">5c </A>
Lin C.-C.
Teng T.-M.
Tsai C.-C.
Liao H.-Y.
Liu
R.-S.
J.
Am. Chem. Soc.
2008,
130:
16417
<A NAME="RU06410ST-5D">5d </A>
Sawama Y.
Sawama Y.
Krause N.
Org.
Lett.
2009,
11:
5034
<A NAME="RU06410ST-6">6 </A> Allylsilylation of alkenes, see:
Motokura K.
Matsunaga S.
Miyaji A.
Sakamoto Y.
Baba T.
Org. Lett.
2010,
12:
1508
<A NAME="RU06410ST-7A">7a </A>
Horino Y.
Luzung MR.
Toste FD.
J. Am. Chem. Soc.
2006,
128:
11364
<A NAME="RU06410ST-7B">7b </A>
Park S.
Lee D.
J. Am. Chem. Soc.
2006,
128:
10664
For general reviews of gold catalysis,
see:
<A NAME="RU06410ST-8A">8a </A>
Jiménez-Núñez E.
Echavarren AM.
Chem.
Commun.
2007,
333
<A NAME="RU06410ST-8B">8b </A>
Gorin DJ.
Toste FD.
Nature
(London)
2007,
446:
395
<A NAME="RU06410ST-8C">8c </A>
Fürstner A.
Davies PW.
Angew.
Chem. Int. Ed.
2007,
46:
3410
<A NAME="RU06410ST-8D">8d </A>
Hashmi ASK.
Chem. Rev.
2007,
107:
3180
<A NAME="RU06410ST-8E">8e </A>
Gorin DJ.
Sherry BD.
Toste FD.
Chem. Rev.
2008,
108:
3351
<A NAME="RU06410ST-8F">8f </A>
Shen HC.
Tetrahedron
2008,
64:
3885
<A NAME="RU06410ST-8G">8g </A>
Shen HC.
Tetrahedron
2008,
64:
7847
<A NAME="RU06410ST-9">9 </A>
Use of phenol as a nucleophile in place
of water gave a complex mixture.
<A NAME="RU06410ST-10">10 </A> In the absence of water, 1 provides 3-allyl-1-silaindenes by a gold-catalyzed
intramolecular trans -allylsilylation reaction,
see:
Matsuda T.
Kadowaki S.
Yamaguchi Y.
Murakami M.
Chem.
Commun.
2008,
2744
<A NAME="RU06410ST-11A">11a </A>
Mayr H.
Hagen G.
J.
Chem. Soc., Chem. Commun.
1989,
91
<A NAME="RU06410ST-11B">11b </A>
Bartl J.
Steenken S.
Mayr H.
J.
Am. Chem. Soc.
1991,
113:
7710 ;
and see also ref. 4c
<A NAME="RU06410ST-12A">12a </A>
Goto K.
Okumura T.
Kawashima T.
Chem. Lett.
2001,
1258
<A NAME="RU06410ST-12B">12b </A>
Denmark SE.
Sweis RF.
Wehrli D.
J. Am. Chem. Soc.
2004,
126:
4865
<A NAME="RU06410ST-13A">13a </A>
Hayashi E.
Takahashi Y.
Itoh H.
Yoneda N.
Bull. Chem.
Soc. Jpn.
1993,
66:
3520
<A NAME="RU06410ST-13B">13b </A>
Hachiya I.
Moriwaki M.
Kobayashi S.
Tetrahedron
Lett.
1995,
36:
409
<A NAME="RU06410ST-13C">13c </A>
Medeiros MR.
Narayan RS.
MacDougal NT.
Schaus S.
Porco JA.
Org. Lett.
2010,
12:
3222
<A NAME="RU06410ST-14">14 </A>
AgNTf2 , PtCl2 ,
(PPh3 )2 PtCl2 /2AgNTf2 ,
and Sc(OTf)3 did not show any catalytic activities. Furthermore,
background reaction mediated by Tf2 NH did not proceed,
either.
<A NAME="RU06410ST-15A">15a </A>
Luzung MR.
Markham JP.
Toste FD.
J.
Am. Chem. Soc.
2004,
126:
10858
<A NAME="RU06410ST-15B">15b </A>
Ma S.
Yu S.
Gu Z.
Angew. Chem.
Int. Ed.
2005,
45:
200
<A NAME="RU06410ST-15C">15c </A>
Belmont P.
Parker E.
Eur. J. Org. Chem.
2009,
6075
<A NAME="RU06410ST-16A">16a </A>
Tamao K.
Kumada H.
Tetrahedron
Lett.
1984,
25:
321
<A NAME="RU06410ST-16B">16b </A>
Jones GR.
Landais Y.
Tetrahedron
1996,
52:
7599
<A NAME="RU06410ST-17">17 </A>
Hashmi ASK.
Angew. Chem. Int. Ed.
2010,
49:
2
<A NAME="RU06410ST-18">18 </A>
For details, see Supporting Information.
<A NAME="RU06410ST-19">19 </A>
Another interesting alternative mechanism
for the formation of 2 , as suggested by
one referee, involves initial formation of 3-allyl-1-silaindenes
and their subsequent hydrolysis. Indeed, we have observed the formation
of 2 from isolated 3-allyl-1-silaindenes
under our reaction conditions. However, we were unable to detect
such intermediates when monitoring the reaction of 1 by ¹ H
NMR spectroscopy (see Supporting Information for further details).
Nevertheless, we would like to thank the referee for this suggestion.