Subscribe to RSS
DOI: 10.1055/s-0030-1259041
Silica-Supported KHSO4: An Efficient System for Activation of Aromatic Terminal Olefins
Publication History
Publication Date:
10 November 2010 (online)
Abstract
Potassium hydrogen sulfate adsorbed on chromatography-grade silica gel activates electron-rich aromatic terminal olefins towards nucleophilic attack at the benzylic position by alcohols. Temperature plays a crucial role and facilitates suppressing nucleophilic reaction in favor of dimerization of the terminal olefin.
Key words
alkenes - alkoxylation - dimerization - potassium hydrogen sulfate - silica gel
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Christoffers J.Bergman RG. J. Am. Chem. Soc. 1996, 118: 4715 -
1b
Liang Y.Yap GPA.Rheingold AL.Theopold KH. Organometallics 1996, 15: 5284 -
1c
Hajela S.Bercaw JE. Organometallics 1994, 13: 1147 -
1d
Aljarallah AM.Anabtawi JA.Siddiqui MAB.Aitani AM.Al-Sa’doun AW. Catal. Today 1992, 14: 1 -
1e
Skupinska J. Chem. Rev. 1991, 91: 613 -
1f
Piers WE.Shapiro PJ.Bunel EE.Bercaw JE. Synlett 1990, 74 -
1g
Pillai SM.Ravindranathan M.Sivaram S. Chem. Rev. 1986, 86: 353 -
1h
Kondo T.Takagi D.Tsujita H.Ura Y.Wada K.Mitsudo T.-A. Angew. Chem. Int. Ed. 2007, 46: 5958 - 2
Zhang S.-Y.Tu Y.-Q.Fan C.-A.Zhang F.-M.Shi L. Angew. Chem. Int. Ed. 2009, 48: 8761 -
3a
Wang D.Li J.Li N.Gao T.Hou S.Chen B. Green Chem. 2010, 12: 45 -
3b
Zaccheria F.Psaro R.Ravasio N. Tetrahedron Lett. 2009, 50: 5221 - 4 Motokura K., Fujita N., Mori K., Mizugaki T., Ebitani K., Kaneda K.; J. Am. Chem. Soc.; 2005, 127: 9674
- 5 Sultanov R. M., Vasil’ev V. V., Dzhemilev U. M.; Russ. J. Org. Chem.; 2010, 46: 355
- 6 Tobisu M., Hyodo I., Onoe M., Chetani N.; Chem. Commun.; 2008, 6013
- 7
Tsuchimoto T.Kamiyama S.Negoro R.Shirakawa E.Kawakami Y. Chem. Commun. 2003, 862 - 8
Sun C.-L.Li B.-J.Shi Z.-J. Chem. Commun. 2010, 46: 677 - 9
Zuniga C.Moya SA.Aguirre P. Catal. Lett. 2009, 130: 373 - 10
Yao X.Li C.-J. J. Am. Chem. Soc. 2004, 126: 6884 - 11
Zhang X.Corma A. Chem. Commun. 2007, 3080 - 12
Motokura K.Fujita N.Mori K.Mizugaki T.Ebitani K.Kaneda K. Angew. Chem. Int. Ed. 2006, 45: 2605 - 13
Liu PN.Xia F.Wang QW.Ren YJ.Chen JQ. Green Chem. 2010, 12: 1049 -
14a
Arumugam P.Kartikeyan G.Perumal PT. Chem. Lett. 2004, 33: 1146 -
14b
Kumar RS.Nagarajan R.Perumal PT. Synthesis 2004, 949 - 15
Sartori G.Balini R.Bigi F.Bosica G.Maggi R.Righi P. Chem. Rev. 2004, 104: 199 - 16
Ramesh C.Mahender G.Ravindranath N.Das B. Tetrahedron Lett. 2003, 44: 1465 - 17
Goswami A.Das RN.Borthakur N. Indian J. Chem., Sect. B 2007, 46: 1893 - 18
Dawans F. Tetrahedron Lett. 1971, 1943 - 19
Wu G.Geib SJ.Rheingold AL.Heck RF. J. Org. Chem. 1988, 53: 3238 -
20a
Catalyst Preparation: KHSO4 (20 g, 144 mmol) was dissolved in distilled H2O (100 mL) and silica gel (25 g, 60-120 mesh) was added. The soaked mixture was thoroughly mixed and dried in a hot oven at 150 ˚C for 24 h to give a free flowing powdery solid. The dried solid mixture was then stored in a vacuum desiccator.
-
20b
Typical Experimental Procedure for Alkoxylation:
4-Methoxystyrene (1 g, 7.5 mmol) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) and 4-phenyl-1-butanol (5 mL). The mixture was then stirred for 3 h at 115 ˚C to give 1-(4-methoxyphenyl)-1-(4-phenyl-1-butoxy)ethane (0.96 g, 45%) as a liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.33 (d, J = 6.4 Hz, 3 H, CH 3CHOCH2), 1.58 (m, 4 H, PhCH 2CH 2), 2.51 (m, 2 H, OCH2CH 2CH2), 3.20 (t, J = 6.4 Hz, 2 H, OCH 2CH2), 3.73 (s, 3 H, PhOCH 3), 4.24 (q, J = 6.4 Hz, 1 H, CH2OCHCH3), 6.80 (d, J = 6.8 Hz, 2 H, 2 × MeOAr-m-H), 7.06-7.21 (m, 7 H,
7 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 24.2 (CH3CHOCH2), 28.1, 29.6, 35.8, 55.3 (4 × CH2), 68.3 (CH3 CHOCH2), 113.8 (OCH3), 125.7, 127.4, 128.3, 128.5, 136.2, 142.6, 158.9 (12 × ArC). MS: m/z (EI) = 284 [M+]. Anal. Calcd for C19H24O2: C, 80.28; H, 8.45. Found: C, 80.32; H, 8.41. -
20c
Typical Procedure for Dimerization: A solution of 4-methoxystyrene (1 g, 7.5 mmol) in toluene (2 mL) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) in toluene (10 mL). The mixture was then stirred for 3 h at 115 ˚C to give the head-to-tail dimmer, 1,3-di-(4-methoxyphenyl)-1-butene (0.65 g, 65%) as a semi-liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.40 (d, J = 6.5 Hz, 3 H, CH 3CH), 3.56 (q, J = 6.5 Hz, 1 H, CH3CHCH), 3.79 (s, 6 H, 2 × PhOCH 3), 6.23-6.36 (m, 2 H, CH=CH), 6.80-6.87 (m, 4 H, 4 × ArH), 7.17-7.29 (m, 4 H, 4 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 21.5 (CH3CH), 41.7 (CH3 CH), 55.3 (2 × OCH3), 113.9 (2 × ArC), 127.3, 127.6 (2 × CH=CH), 127.8, 128.2, 128.4, 129.9, 130.5, 133.5, 138.0, 157.9, 158.8 (10 × ArC). MS: m/z = (EI) 268 [M+]. Anal. Calcd for C18H20O2: C, 80.59; H, 7.46. Found: C, 80.54; H, 7.49.
-
21a
Fujii Y.Furugaki H.Tamura E.Yano S.Kita K. Bull. Chem. Soc. Jpn. 2005, 78: 456 -
21b
Zaccheria F.Psaro R.Ravasio N. Tetrahedron Lett. 2009, 50: 5221 -
21c
Murphy JA.Khan TA.Zhou S.Thomson DW.Mahesh M. Angew. Chem. Int. Ed. 2005, 44: 1356 -
21d
Zhang Y.Sigman MS. Org. Lett. 2006, 8: 5557 -
21e
Minai M, andHigashii T. inventors; Eur. Patent Appl. EP 288297.