Synlett 2010(19): 2908-2912  
DOI: 10.1055/s-0030-1259041
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Silica-Supported KHSO4: An Efficient System for Activation of Aromatic Terminal Olefins

Ram Nath Das, Kuladip Sarma, Madan Gopal Pathak, Amrit Goswami*
Synthetic Organic Chemistry Division, North-East Institute of Science & Technology (A Constituent Establishment of CSIR, New Delhi), Jorhat, Assam 785006, India
Fax: +91(376)2370011; e-Mail: amritg_2007@rediffmail.com;
Further Information

Publication History

Received 21 July 2010
Publication Date:
10 November 2010 (online)

Abstract

Potassium hydrogen sulfate adsorbed on chromatography-grade silica gel activates electron-rich aromatic terminal olefins towards nucleophilic attack at the benzylic position by alcohols. Temperature plays a crucial role and facilitates suppressing nucleophilic reaction in favor of dimerization of the terminal olefin.

    References and Notes

  • 1a Christoffers J. Bergman RG. J. Am. Chem. Soc.  1996,  118:  4715 
  • 1b Liang Y. Yap GPA. Rheingold AL. Theopold KH. Organometallics  1996,  15:  5284 
  • 1c Hajela S. Bercaw JE. Organometallics  1994,  13:  1147 
  • 1d Aljarallah AM. Anabtawi JA. Siddiqui MAB. Aitani AM. Al-Sa’doun AW. Catal. Today  1992,  14:  1 
  • 1e Skupinska J. Chem. Rev.  1991,  91:  613 
  • 1f Piers WE. Shapiro PJ. Bunel EE. Bercaw JE. Synlett  1990,  74 
  • 1g Pillai SM. Ravindranathan M. Sivaram S. Chem. Rev.  1986,  86:  353 
  • 1h Kondo T. Takagi D. Tsujita H. Ura Y. Wada K. Mitsudo T.-A. Angew. Chem. Int. Ed.  2007,  46:  5958 
  • 2 Zhang S.-Y. Tu Y.-Q. Fan C.-A. Zhang F.-M. Shi L. Angew. Chem. Int. Ed.  2009,  48:  8761 
  • 3a Wang D. Li J. Li N. Gao T. Hou S. Chen B. Green Chem.  2010,  12:  45 
  • 3b Zaccheria F. Psaro R. Ravasio N. Tetrahedron Lett.  2009,  50:  5221 
  • 4 Motokura K., Fujita N., Mori K., Mizugaki T., Ebitani K., Kaneda K.; J. Am. Chem. Soc.; 2005, 127: 9674
  • 5 Sultanov R. M., Vasil’ev V. V., Dzhemilev U. M.; Russ. J. Org. Chem.; 2010, 46: 355
  • 6 Tobisu M., Hyodo I., Onoe M., Chetani N.; Chem. Commun.; 2008, 6013
  • 7 Tsuchimoto T. Kamiyama S. Negoro R. Shirakawa E. Kawakami Y. Chem. Commun.  2003,  862 
  • 8 Sun C.-L. Li B.-J. Shi Z.-J. Chem. Commun.  2010,  46:  677 
  • 9 Zuniga C. Moya SA. Aguirre P. Catal. Lett.  2009,  130:  373 
  • 10 Yao X. Li C.-J. J. Am. Chem. Soc.  2004,  126:  6884 
  • 11 Zhang X. Corma A. Chem. Commun.  2007,  3080 
  • 12 Motokura K. Fujita N. Mori K. Mizugaki T. Ebitani K. Kaneda K. Angew. Chem. Int. Ed.  2006,  45:  2605 
  • 13 Liu PN. Xia F. Wang QW. Ren YJ. Chen JQ. Green Chem.  2010,  12:  1049 
  • 14a Arumugam P. Kartikeyan G. Perumal PT. Chem. Lett.  2004,  33:  1146 
  • 14b Kumar RS. Nagarajan R. Perumal PT. Synthesis  2004,  949 
  • 15 Sartori G. Balini R. Bigi F. Bosica G. Maggi R. Righi P. Chem. Rev.  2004,  104:  199 
  • 16 Ramesh C. Mahender G. Ravindranath N. Das B. Tetrahedron Lett.  2003,  44:  1465 
  • 17 Goswami A. Das RN. Borthakur N. Indian J. Chem., Sect. B  2007,  46:  1893 
  • 18 Dawans F. Tetrahedron Lett.  1971,  1943 
  • 19 Wu G. Geib SJ. Rheingold AL. Heck RF. J. Org. Chem.  1988,  53:  3238 
  • 20a

    Catalyst Preparation: KHSO4 (20 g, 144 mmol) was dissolved in distilled H2O (100 mL) and silica gel (25 g, 60-120 mesh) was added. The soaked mixture was thoroughly mixed and dried in a hot oven at 150 ˚C for 24 h to give a free flowing powdery solid. The dried solid mixture was then stored in a vacuum desiccator.

  • 20b

    Typical Experimental Procedure for Alkoxylation:
    4-Methoxystyrene (1 g, 7.5 mmol) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) and 4-phenyl-1-butanol (5 mL). The mixture was then stirred for 3 h at 115 ˚C to give 1-(4-methoxyphenyl)-1-(4-phenyl-1-butoxy)ethane (0.96 g, 45%) as a liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.33 (d, J = 6.4 Hz, 3 H, CH 3CHOCH2), 1.58 (m, 4 H, PhCH 2CH 2), 2.51 (m, 2 H, OCH2CH 2CH2), 3.20 (t, J = 6.4 Hz, 2 H, OCH 2CH2), 3.73 (s, 3 H, PhOCH 3), 4.24 (q, J = 6.4 Hz, 1 H, CH2OCHCH3), 6.80 (d, J = 6.8 Hz, 2 H, 2 × MeOAr-m-H), 7.06-7.21 (m, 7 H,
    7 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 24.2 (CH3CHOCH2), 28.1, 29.6, 35.8, 55.3 (4 × CH2), 68.3 (CH3 CHOCH2), 113.8 (OCH3), 125.7, 127.4, 128.3, 128.5, 136.2, 142.6, 158.9 (12 × ArC). MS: m/z (EI) = 284 [M+]. Anal. Calcd for C19H24O2: C, 80.28; H, 8.45. Found: C, 80.32; H, 8.41.

  • 20c

    Typical Procedure for Dimerization: A solution of 4-methoxystyrene (1 g, 7.5 mmol) in toluene (2 mL) was added slowly to a round-bottomed flask containing KHSO4-SiO2 (100 mg) in toluene (10 mL). The mixture was then stirred for 3 h at 115 ˚C to give the head-to-tail dimmer, 1,3-di-(4-methoxyphenyl)-1-butene (0.65 g, 65%) as a semi-liquid. ¹H NMR (300 MHz, CDCl3; Me4Si): δ = 1.40 (d, J = 6.5 Hz, 3 H, CH 3CH), 3.56 (q, J = 6.5 Hz, 1 H, CH3CHCH), 3.79 (s, 6 H, 2 × PhOCH 3), 6.23-6.36 (m, 2 H, CH=CH), 6.80-6.87 (m, 4 H, 4 × ArH), 7.17-7.29 (m, 4 H, 4 × ArH). ¹³C NMR (75 MHz, CDCl3; Me4Si): δ = 21.5 (CH3CH), 41.7 (CH3 CH), 55.3 (2 × OCH3), 113.9 (2 × ArC), 127.3, 127.6 (2 × CH=CH), 127.8, 128.2, 128.4, 129.9, 130.5, 133.5, 138.0, 157.9, 158.8 (10 × ArC). MS: m/z = (EI) 268 [M+]. Anal. Calcd for C18H20O2: C, 80.59; H, 7.46. Found: C, 80.54; H, 7.49.

  • 21a Fujii Y. Furugaki H. Tamura E. Yano S. Kita K. Bull. Chem. Soc. Jpn.  2005,  78:  456 
  • 21b Zaccheria F. Psaro R. Ravasio N. Tetrahedron Lett.  2009,  50:  5221 
  • 21c Murphy JA. Khan TA. Zhou S. Thomson DW. Mahesh M. Angew. Chem. Int. Ed.  2005,  44:  1356 
  • 21d Zhang Y. Sigman MS. Org. Lett.  2006,  8:  5557 
  • 21e Minai M, and Higashii T. inventors; Eur. Patent Appl.  EP 288297.