Subscribe to RSS
DOI: 10.1055/s-0030-1259042
Olefin Cross-Metathesis with 3-Nitropropene
Publication History
Publication Date:
11 November 2010 (online)
Abstract
The synthesis of functionalized allylic nitro compounds via cross-metathesis with a new cross-metathesis partner, 3-nitropropene, is reported. The reaction of various terminal olefins with 3-nitropropene, promoted by 5 mol% of standard commercially available ruthenium pre-catalysts in the presence of triphenyl borate, provided the substituted β,γ-nitroolefins in moderate to high yields. These results render the catalytic olefin cross-metathesis as a mild and selective method for the synthesis of allylic nitro compounds.
Key words
ruthenium - catalysis - olefin metathesis - Lewis acids - nitroolefins
- Supporting Information for this article is available online:
- Supporting Information
- For selected reviews on catalytic cross-metathesis, see:
-
1a
Blechert S.Connon SJ. Angew. Chem. Int. Ed. 2003, 42: 1900 -
1b
Vernall AJ.Abell AD. Aldrichimica Acta 2003, 36: 93 -
1c For industrial applications,
see:
Pederson RL.Fellows IM.Ung TA.Ishihara H.Hajela SP. Adv. Synth. Catal. 2002, 344: 728 -
1d For a review on metathesis
of heteroatom-substituted olefins, see:
Van de Weghe P.Bisseret P.Blanchard N.Eustache J.
J. Organomet. Chem. 2006, 691: 5078 -
2a
Grubbs RH. Handbook of Metathesis Wiley-VCH; Weinheim Germany: 2003. -
2b
Hoveyda AH.Gillingham DG.Van Veldhuizen JJ.Kataoka O.Garber SB.Kingsbury JS.Harrity JPA. Org. Biomol. Chem. 2004, 2: 1 -
2c
Samojowicz C.Bieniek M.Grela K. Chem. Rev. 2009, 109: 3708 -
2d
Michrowska A.Bujok R.Harutyunyan S.Sashuk V.Dolgonos G.Grela K. J. Am. Chem. Soc. 2004, 126: 9318 -
2e
Bieniek M.Bujok R.Cabaj M.Lugan N.Lavigne G.Arlt D.Grela K. J. Am. Chem. Soc. 2006, 128: 13652 -
3a
Randl S.Gessler S.Wakamatsu H.Blechert S. Synlett 2001, 432 -
3b
Rivard M.Blechert S. Eur. J. Org. Chem. 2003, 68: 2225 -
3c
Bruneau C.Fischmeister C.Miao X.Malacea R.Dixneuf PH. Eur. J. Lipid Sci. Technol. 2010, 112: 3 -
4a
Chatterjee AK.Choi T.-L.Grubbs RH. Synlett 2001, 1034 -
4b
Lera M.Hayes CJ. Org. Lett. 2001, 3: 2765 -
4c
Stoianova DS.Hanson PR. Org. Lett. 2000, 2: 1769 -
5a
Vinokurov N.Michrowska A.Szmigielska A.Drzazga Z.Wójciuk G.Demchuk OM.Grela K.Pietrusiewicz KM.Butenschön H. Adv. Synth. Catal. 2006, 348: 931 -
5b
Bisaro F.Gouverneur V. Tetrahedron 2005, 61: 2395 -
6a
Imhof S.Randl S.Blechert S. Chem. Commun. 2001, 1692 -
6b
Eignerová B.Dračínský M.Kotora M. Eur. J. Org. Chem. 2008, 4493 -
7a
Grela K.Bieniek M. Tetrahedron Lett. 2001, 42: 6425 -
7b
Grela K.Michrowska A.Bieniek M.Kim M.Klajn R. Tetrahedron 2003, 59: 4525 -
7c
Bieniek M.Kooda D.Grela K. Org. Lett. 2006, 8: 5689 - 8
Mikus A.Sashuk V.Kūdziorek M.Samojowicz C.Ostrowski S.Grela K. Synlett 2005, 1142 -
9a
Sashuk V.Samojowicz C.Szadkowska A.Grela K. Chem. Commun. 2008, 2468 -
9b
Macnaughtan ML.Gary JB.Gerlach DL.Johnson MJA.Kampf JW. Organometallics 2009, 28: 2880 - 10 For selectivity in olefin cross-metathesis,
see:
Chatterjee AK.Choi T.-L.Sanders DP.Grubbs RH. J. Am. Chem. Soc. 2003, 125: 11360 - 11
Marsh GP.Parsons PJ.McCarthy C.Corniquet XG. Org. Lett. 2007, 9: 2613 -
12a
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; Weinheim Germany: 2001. -
12b
Ballini R.Bosica G.Fiorini D.Palmieri A.Pietrini M. Chem. Rev. 2005, 105: 933 - For synthesis of β,γ-nitroolefines, see:
-
13a
Samojlovich TI.Poljanskaja AS.Perekalin VV. Zh. Org. Khim. 1967, 3: 579 -
13b
Bloom AJ.Mellor JM. Tetrahedron Lett. 1986, 27: 873 -
13c
Seebach D.Henning R.Lehr F. Angew. Chem. 1978, 90: 479 -
13d
Reynolds R.Adkins H. J. Am. Chem. Soc. 1929, 51: 279 -
13e
Sychkova LD.Kalinkina OL.Shavarow JuS. Zh. Org. Khim. 1981, 17: 1435 -
13f
Piotrowska H. Bull. Acad. Polon, Sci., Ser. Sci. Chim. 1971, 19: 595 -
13g
Stockij AA.Nowackaja NI.Okulovskaja NV.Kirichenko VV.Postnikova IJ. Zh. Org. Khim. 1980, 16: 1162 -
13h
Tissot M.Müller D.Belot S.Alexakis A. Org. Lett. 2010, 12: 2770 - For selected reactions for replacement of nitro group in allylic position, see:
-
14a
Tamura R.Hegedus LS. J. Am. Chem. Soc. 1982, 104: 3727 -
14b
Ono N.Hamamoto I.Kaji A. J. Chem. Soc., Chem. Commun. 1982, 821 -
14c
Ono N.Hamamoto I.Kaji A. Bull. Chem. Soc. Jpn. 1985, 58: 1863 -
14d
Tamura R.Hayashi K.Kai Y.Oda D. Tetrahedron Lett. 1984, 25: 4437 -
14e
Ono N.Hamamoto I.Kawai T.Kaji A.Kakihara M. Bull. Chem. Soc. Jpn. 1986, 59: 405 -
14f
Ono N.Hamamoto I.Kaji A. J. Chem. Soc., Chem. Commun. 1984, 274 -
14g
Carpino LA.Cohen BJ.Stephens KE.Sadat-Aalaee SY.Tien J.-H.Langridge DC. J. Org. Chem. 1986, 51: 3734 -
14h
Ono N.Hamamoto I.Yanai T.Kaji A. J. Chem. Soc., Chem. Commun. 1985, 523 - 15
Ono N.Hamamoto I.Kamimura A.Kaji A.Tamura R. Synthesis 1987, 258 - 16
Bieniek M.Michrowska A.Usanov DL.Grela K. Chem. Eur. J. 2008, 14: 806 - For fluorinated aromatic hydrocarbons in olefin metathesis, see:
-
17a
Samojowicz C.Bieniek M.Zarecki A.Kadyrov R.Grela K. Chem. Commun. 2008, 6282 -
17b
Jacoby M. Chem. Eng. News 2008, 86: 36 -
17c
Parker D. Chem. Sci. 2009, 6: C4 -
17d
Rost D.Porta M.Gessler S.Blechert S. Tetrahedron Lett. 2008, 49: 5968 - For chelation of ruthenium active species in olefin metathesis reactions, see:
-
18a
Fürstner A.Langemann K.
J. Am. Chem. Soc. 1997, 119: 9130 -
18b
Ghosh AK.Cappiello J.Shin D. Tetrahedron Lett. 1998, 39: 4651 -
18c
Lin YA.Chalker JM.Floyd N.Bernardes JLG.Davis BG. J. Am. Chem. Soc. 2008, 130: 9642 -
18d
Vedrenne E.Dupont H.Oualef S.Elkaim L.Grimaud L. Synlett 2005, 670 -
18e
Yang Q.Xiao W.-J.Yu Z. Org. Lett. 2005, 7: 871 - 21
Lelais G.MacMillan DWC. Aldrichimica Acta 2006, 39: 79
References and Notes
General Setup for CM Reactions with 3-Nitropropene: Reactions were carried out under argon in pre-dried glassware using Schlenk techniques. Solvents were dried by distillation over CaH2 under argon and stored under an argon atmosphere. Olefin metathesis pre-catalysts were obtained from Sigma-Aldrich (1b, 1c) and Apeiron Catalysts (1d, www.apeiron-catalysts.com). All other commercially available chemicals were used as received. Comparative CM experiments (refer to Tables [¹] and [²] ) were conducted with an internal standard (tetradecane) and analyzed by GC. The responses of the FID detector were calibrated using 3a/tetradecane and 4a/tetradecane standard solutions. Each CM experiment was repeated at least twice.
20
Representative
Procedure of CM Reaction. To a solution of alkene 3b (1.23 mmol, 240.8 mg) and 3-nitropropene (2.63
mmol, 228.6 mg) in CH2Cl2 (5 mL), triphenyl
borate (0.30 mmol, 87.6 mg, 25 mol%) was added. Next, ruthenium pre-catalyst 1d was added in one portion (0.06 mmol,
40.8 mg, 5 mol%) and the resulting mixture was refluxed
for 5 h under an argon atmosphere. The solvent was removed under reduced
pressure. The crude product was purified by flash chromatography
(cyclohexane-EtOAc = 20:1) to yield the analytically
pure product 4b as an yellow oil (0.89
mmol, 227.4 mg, 73%) as a mixture of E/Z isomers (in 5.2:1 ratio). Analytical
data: ¹H NMR (400 MHz, CDCl3; E-isomer): δ = 5.92
(dtt, J = 15.3, 6.8, 1.0 Hz,
1 H), 5.74 (dtt, J = 15.3, 7.2, 1.4
Hz, 1 H), 4.87 (dd, J = 7.2,
0.8 Hz, 2 H), 2.09-2.14 (m, 2 H), 1.26 (m, 20 H), 0.88
(t, J = 6.8 Hz, 3 H). ¹³C
NMR (100 MHz, CDCl3; E-isomer): δ = 141.9
(CH), 118.4 (CH), 77.7 (CH2), 32.3 (CH2),
31.9 (CH2), 29.6 (CH2), 29.64 (CH2), 29.61
(CH2), 29.5 (CH2), 29.4 (CH2),
29.3 (CH2), 29.13 (CH2), 29.07 (CH2),
28.5 (CH2), 22.7 (CH2), 14.1 (Me).
MS
(ESI): m/z = 278 [M + Na]+.
IR (neat): 2925, 2854, 1557, 1467, 1375, 970 cm-¹.
Anal. Calcd for C15H29NO2: C, 70.54; H,
11.45; N, 5.48. Found: C, 70.41; H, 11.57; N, 5.42.