Abstract
Starting from a readily available building block, two straightforward
diastereoselective approaches to functionalized 3′-methyl-branched
carbocyclic nucleoside analogues of neplanocin F and abacavir bearing
different purine bases are described. The key steps are a regioselective
allylic hydroxylation in the first approach and a ring opening of
a cyclic carbonate for the second one, affording allylic alcohols
as carbasugar intermediates. In both cases, the carbasugars thus
synthesized are then coupled with different purine bases.
Key words
stereoselective synthesis - nucleosides - Mitsunobu reaction - purine - carbocyclic nucleoside
References and Notes
1
Kusuka T.
Yamamoto H.
Shibata M.
Muroi M.
Kishi T.
Mizuno K.
J. Antibiot.
1968,
21:
255
2
Yaginuma S.
Muto N.
Tsujino M.
Sudate Y.
Hayashi M.
Otani M.
J. Antibiot.
1981,
34:
359
3a
Vince R.
Hua M.
Brownell J.
Daluge S.
Lee F.
Shannon WM.
Lavelle GC.
Qualls J.
Weislow OS.
Kiser R.
Canonico PG.
Schultz RH.
Narayanan VL.
Mayo JG.
Shoemaker RH.
Boyd MR.
Biochem. Biophys. Res. Commun.
1988,
156:
1046
3b
Vince R.
Hua M.
J. Med. Chem.
1990,
33:
17
4a Daluge SM. inventors; U.S. Patent, 5034394.
4b
Good
SS.
Daluge SM.
Ching SV.
Ayers KM.
Mahony WB.
Faletto MB.
Domin BA.
Owens BS.
Dornsife RE.
McDowell JA.
Lafon SW.
Symonds WT.
Antiviral
Res.
1995,
26:
A229
For some representative examples,
see:
5a
Rao JR.
Schinazi RF.
Chu CK.
Bioorg. Med. Chem.
2007,
15:
839
5b
Liu LJ.
Ko OH.
Hong JH.
Bull.
Korean Chem. Soc.
2008,
29:
1723
5c
Abeijón P.
Blanco JM.
Caamaño O.
Fernández F.
García MD.
García-Mera X.
Rodríguez-Borges JE.
Balzarini J.
De Clercq E.
Synthesis
2009,
2766
5d
Ugliarolo EA.
Lantaño B.
Moltrasio GY.
Moglioni AG.
Tetrahedron:
Asymmetry
2009,
20:
1848
6a
Herdewijn P.
De Clercq E.
Balzarini J.
Vanderhaeghe H.
J.
Med. Chem.
1985,
28:
550
6b
Marquez VE.
Lim M.
Med.
Res. Rev.
1986,
6:
1
6c
Saunders J.
Cameron JM.
Med. Res. Rev.
1995,
15:
497
6d
Roberts S.
Biggadike K.
Borthwick AD.
Kirk B. In Topics
in Medicinal Chemistry
Leeming PR.
Royal Society of Chemistry;
London:
1998.
7
Cookson RC.
Dudfield PJ.
Newton RF.
Ravenscroft P.
Scopes DIC.
Cameron JM.
Eur.
J. Med. Chem.
1985,
20:
375
8
Marquez VE. In Advances in Antiviral Drug Design
Vol. 2:
De Clercq E.
JAI Press Inc.;
Greenwich / CT:
1996.
p.89-146
9a
Bodenteich M.
Marquez VE.
Hallows WH.
Goldstein BM.
J. Org. Chem.
1992,
57:
2071
9b
Zhang H.
Schinazi RF.
Chu CK.
Bioorg. Med. Chem.
2006,
14:
8314
For reviews, see:
10a
Crimmins MT.
Tetrahedron
1998,
54:
9229
10b
Ferrero M.
Gotor V.
Chem. Rev.
2000,
100:
4319
10c
Agrofoglio LA.
Gillaizeau I.
Saito Y.
Chem. Rev.
2003,
103:
1875
10d
Rodriguez JB.
Comin MJ.
Mini-Rev.
Med. Chem.
2003,
3:
95
10e For a recent book, see:
Modified Nucleosides in Biochemistry, Biotechnology and
Medicine
Herdewijn P.
Wiley-VCH
Verlag GmbH & Co. KGaA;
Weinheim:
2008.
11
Franchetti P.
Cappellacci L.
Pasqualini M.
Petrelli R.
Vita P.
Jayaram HN.
Horvath Z.
Szekerers T.
Grifantini M.
J.
Med. Chem.
2005,
48:
4983
12
Aljarah M.
Couturier S.
Mathe C.
Périgaud C.
Bioorg. Med. Chem.
2008,
16:
7436
For representative examples of
methyl-branched carbocyclic nucleoside analogues and references
cited therein, see the following:
13a 1′-Methyl-branched: Kim A.
Hong JH.
Bull.
Korean Chem. Soc.
2006,
27:
976
2′-Methyl-branched:
13b
Lee JA.
Kim HO.
Tosh DK.
Moon
HR.
Kim S.
Jeong LS.
Org.
Lett.
2006,
8:
5081
13c
Gosselin G.
Griffe L.
Meillon J.-C.
Storer R.
Tetrahedron
2006,
62:
906
13d
Dübon P.
Schelwies M.
Helmchen G.
Chem. Eur. J.
2008,
14:
6722
3′-Methyl-branched:
13e
Aubin Y.
Audran G.
Monti H.
De
Clercq E.
Bioorg. Med. Chem.
2008,
16:
374
13f
Brémond P.
Audran G.
Monti H.
De Clercq E.
Pannecouque C.
Synthesis
2009,
290
4′-Methyl-branched:
13g
Kim A.
Hong JH.
Bull. Korean Chem. Soc.
2005,
26:
1767
13h
Yin X.-Q.
Schneller SW.
Tetrahedron Lett.
2006,
47:
4057
13i 5′-Methyl-branched: Ye W.
Schneller SW.
J.
Org. Chem.
2006,
71:
8641
13j 6′-Methyl-branched: Kim A.
Hong JH.
Bull.
Korean Chem. Soc.
2007,
28:
1545
14
Mathé C.
Gosselin G.
Antiviral Res.
2006,
71:
276
15
Brémond P.
Audran G.
Aubin Y.
Monti H.
Synlett
2007,
1124
16
Riley HL.
Friend NAC.
J. Chem.
Soc.
1932,
2342
17 CCDC 768283 contains all crystallographic
details of this publication and is available free of charge
at www.ccdc.cam.ac.uk/conts/retrieving.html or
can be ordered from the following address: Cambridge Crystallographic
Data Centre, 12 Union Road, GB-Cambridge CB21EZ, UK; fax: +44
(1223)336033; or deposit@ccdc.cam.ac.uk.
18a
Trost BM.
Li L.
Guile SD.
J. Am. Chem. Soc.
1992,
114:
8745
18b
Trost BM.
J. Org. Chem.
2004,
69:
5813
19
Saville-Stones EA.
Lindell SD.
Jennings NS.
Head JC.
Ford MI.
J. Chem. Soc., Perkin
Trans. 1
1991,
2603
20a
Mitsunobu O.
Synthesis
1981,
1
20b
Jenny TF.
Horlacher J.
Previsani N.
Benner SA.
Helv.
Chim. Acta
1992,
75:
1944
20c Review: Hughes DL.
Org. Prep. Proced. Int.
1996,
28:
127
21
Besada P.
Costas T.
Terán C.
Magn.
Reson. Chem.
2010,
48:
483
22a
Takagi C.
Sukeda M.
Kim H.-S.
Wataya Y.
Yabe S.
Kitade Y.
Matsuda A.
Shuto S.
Org. Biomol.
Chem.
2005,
3:
1245
22b
Lee JA.
Moon HR.
Kim HO.
Kim KR.
Lee KM.
Kim BT.
Hwang KJ.
Chun MW.
Jacobson KA.
Jeong LS.
J. Org. Chem.
2005,
70:
5006
23
Xu P.
Liu L.
Chen X.-Z.
Li Y.
Liu J.
Jin Z.-P.
Wang G.-Q.
Lei P.-S.
Bioorg.
Med. Chem. Lett.
2009,
19:
4079
24
Greene TW.
Wuts PGM.
Protective Groups in Organic Synthesis
3rd
ed.:
John Wiley and Sons, Inc.;
New York:
1999.
p.76
25
Birch AJ.
J.
Chem. Soc.
1944,
430
26
Ludek OR.
Krämer T.
Balzarini J.
Meier C.
Synthesis
2006,
1313