References and Notes
<A NAME="RD21010ST-1A">1a</A>
Venkat RG,
Qi L,
Pierce M,
Robbins PB,
Sahasrabudhe SR, and
Selliah R. inventors; WO 2007076085.
<A NAME="RD21010ST-1B">1b</A>
Arakawa H,
Monden Y,
Nakatsuru Y, and
Kodera T. inventors; WO 2003080077.
<A NAME="RD21010ST-1C">1c</A>
Burstein HJ.
Overmoyer B.
Gelman R.
Silverman P.
Savoie J.
Clarke K.
Dumadag L.
Younger J.
Ivy P.
Winer EP.
Invest. New Drugs
2007,
25:
161
<A NAME="RD21010ST-2A">2a</A>
Li X.
Vince R.
Bioorg.
Med. Chem.
2006,
14:
2942
<A NAME="RD21010ST-2B">2b</A>
Zhao G.
Wang C.
Liu C.
Lou H.
Mini-Rev. Med. Chem.
2007,
7:
707
<A NAME="RD21010ST-3A">3a</A>
Gelbard HA,
Maggirwar SB,
Dewhurst S, and
Schifitto GP. inventors; WO 2007076372.
<A NAME="RD21010ST-3B">3b</A>
Mellman I, and
Jiang A. inventors; WO 2007075911.
<A NAME="RD21010ST-4A">4a</A>
Paolini L.
Sci. Rep. Ist. Super. Sanita
1961,
1:
86
<A NAME="RD21010ST-4B">4b</A>
Okamoto T,
Akase T,
Izumi S,
Inaba S, and
Yamamoto H. inventors; JP 7220196.
; Chem. Abstr. 1972, 77, 152142
<A NAME="RD21010ST-4C">4c</A>
Winter J, and
Di Mola N. inventors; West German Patent 2442513.
; Chem. Abstr. 1975, 82, 156255
<A NAME="RD21010ST-5A">5a</A>
Stubbs MC.
Armstrong SA.
Curr. Drug Targets
2007,
8:
703
<A NAME="RD21010ST-5B">5b</A>
Shenoy S.
Vasania VS.
Gopal M.
Mehta A.
Toxicol. Appl. Pharmacol.
2007,
222:
80
<A NAME="RD21010ST-5C">5c</A>
Seedhouse CH.
Hunter HM.
Lloyd-Lewis B.
Massip A.-M.
Pallis M.
Carter GI.
Grundy M.
Shang S.
Russel NH.
Leukemia
2006,
20:
2130
<A NAME="RD21010ST-6A">6a</A>
Joseph J,
Meijer L, and
Liger F. inventors; FR2876377.
<A NAME="RD21010ST-6B">6b</A>
Das S,
Brown JW,
Dong Q,
Gong X,
Kaldor SW,
Liu Y,
Paraselli BR,
Scorah N,
Stafford JA, and
Wallace MB. inventors; WO 2007044779.
<A NAME="RD21010ST-7">7</A>
Fong TM,
Erondu NE,
Macneil DJ,
Mcintyre JH, and
Vander Pleog LHT. inventors; WO 2004110368.
<A NAME="RD21010ST-8A">8a</A>
Molina P.
Fresneda PM.
Synthesis
1989,
878
<A NAME="RD21010ST-8B">8b</A>
Beccalli EM.
Clerici F.
Marchesini A.
Tetrahedron
2001,
57:
4787
<A NAME="RD21010ST-8C">8c</A>
Erba E.
Gelmi ML.
Pocar D.
Tetrahedron
2000,
56:
9991
<A NAME="RD21010ST-8D">8d</A>
Ono A.
Narasaka K.
Chem. Lett.
2001,
146
<A NAME="RD21010ST-8E">8e</A>
Achab S.
Guyor M.
Potier P.
Tetrahedron
Lett.
1995,
36:
2615
<A NAME="RD21010ST-9A">9a</A>
Kaczmarek L.
Peczynka-Czoch W.
Osiadacz J.
Mordarski M.
Sokalski WA.
Boratynski J.
Marcinkovska E.
Glazman-Kusnierczyk H.
Radzikowski C.
Bioorg.
Med. Chem. Lett.
1999,
7:
22457
<A NAME="RD21010ST-9B">9b</A>
Laurson W.
Perkin WH.
Robinson R.
J.
Chem. Soc.
1924,
125:
626
<A NAME="RD21010ST-9C">9c</A>
Kaczmarek L.
Balicki R.
Nantka-Namirski P.
Peczynska-Czoch W.
Mordarski M.
Arch.
Pharm. (Weinheim, Ger.)
1988,
321:
463
<A NAME="RD21010ST-9D">9d</A>
Mehta LK.
Parrick J.
Payne F.
J. Chem. Soc., Perkin. Trans. 1
1993,
1261
<A NAME="RD21010ST-10A">10a</A>
Okuda S.
Robinson MM.
J.
Am. Chem. Soc.
1959,
81:
740
<A NAME="RD21010ST-10B">10b</A>
Yamazaki T.
Matoba K.
Imoto S.
Terashima M.
Chem. Pharm. Bull.
1976,
24:
3011
<A NAME="RD21010ST-11A">11a</A>
Tahri A.
Buysens KJ.
Van der Eycken EV.
Vanderberghe DM.
Hoornaert GJ.
Tetrahedron
1998,
54:
13211
<A NAME="RD21010ST-11B">11b</A>
Molina P.
Alajarín M.
Vidal A.
Sánchez-Aranda P.
J. Org. Chem.
1992,
57:
929
<A NAME="RD21010ST-11C">11c</A>
Forbes IT.
Johnson CN.
Thompson M.
Synth. Commun.
1993,
23:
715
<A NAME="RD21010ST-12">12</A>
Rocca P.
Marsais F.
Godard A.
Queguiner G.
Tetrahedron
1993,
49:
49
<A NAME="RD21010ST-13">13</A>
Vera-Luque P.
Alajarin R.
Alvarez-Builla J.
Vaquero
JJ.
Org. Lett.
2006,
8:
415
<A NAME="RD21010ST-14">14</A>
Meth-Cohn O.
Suschitzky H.
Adv. Heterocycl. Chem.
1972,
14:
211
<A NAME="RD21010ST-15A">15a</A>
Verboom W.
Reinhoudt DN.
Recl.
Trav. Chim. Pays-Bas
1990,
109:
311
<A NAME="RD21010ST-15B">15b</A>
Verboom W.
Reinhoudt DN.
Visser R.
Harkema S.
J. Org. Chem.
1984,
49:
269
<A NAME="RD21010ST-16A">16a</A>
Tverdokhlebov AV.
Gorulya AP.
Tolmachev AA.
Kostyuk AN.
Chernega AN.
Rusanov EB.
Tetrahedron
2006,
62:
9146
<A NAME="RD21010ST-16B">16b</A>
Rabong C.
Hametner C.
Mereiter K.
Kartsev VG.
Jordis U.
Heterocycles
2008,
75:
799
<A NAME="RD21010ST-16C">16c</A>
Ryabukhin SV.
Plaskon AS.
Volochnyuk DM.
Pipko SE.
Tolmachev AA.
Synth. Commun.
2008,
38:
3032
<A NAME="RD21010ST-17A">17a</A>
Ojea V.
Maestro MA.
Quintela JM.
Tetrahedron
1993,
49:
2691
<A NAME="RD21010ST-17B">17b</A>
Ojea V.
Muinelo I.
Figueroa MC.
Ruiz M.
Quintela JM.
Synlett
1995,
622
<A NAME="RD21010ST-17C">17c</A>
Ojea V.
Muinelo I.
Quintela JM.
Tetrahedron
1998,
54:
927
<A NAME="RD21010ST-17D">17d</A>
Devi I.
Baruah B.
Bhuyan PJ.
Synlett
2006,
2593
<A NAME="RD21010ST-18">18</A>
Vlaskina NM.
Suzdalev KF.
Babakova MN.
Mezheritskii VV.
Kartsev VG.
Russ. Chem. Bull.
2006,
55:
384
<A NAME="RD21010ST-19">19</A>
Sandip Murarka S.
Zhang C.
Konieczynska MD.
Seidel D.
Org.
Lett.
2009,
11:
129
<A NAME="RD21010ST-20A">20a</A>
Baruah B.
Bhuyan PJ.
Tetrahedron
2009,
65:
7099
<A NAME="RD21010ST-20B">20b</A>
Deb ML.
Majumder S.
Baruah B.
Bhuyan PJ.
Synthesis
2010,
929
<A NAME="RD21010ST-20C">20c</A>
Deb ML.
Bhuyan PJ.
Synlett
2008,
325
<A NAME="RD21010ST-20D">20d</A>
Deb ML.
Bhuyan PJ.
Synthesis
2008,
2891
<A NAME="RD21010ST-20E">20e</A>
Deb ML.
Baruah B.
Bhuyan PJ.
Synthesis
2007,
28
<A NAME="RD21010ST-21">21</A>
Synthesis of 2-Chloro-3-formylindole (2)
To
a mixture of anhyd DMF (10 mL) and anhyd CHCl3 (10 mL)
was added phosphorous oxychloride (10 mL) over 15 min. To this a
solution of oxindole 1 (3.2 g, 24 mmol)
and pyridine (5 mL), both in anhyd CHCl3 (25mL), was
slowly added. The reaction mixture was kept for 48 h at r.t. and
then poured into ice-cold H2O (100 mL). The solid compound 2 formed was filtered and dried. Yield
2.48 g (80%); mp 167-168 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.22-7.38
(m, 2 H), 7.95-7.99 (m, 1 H), 8.15-8.18 (m, 1
H), 9.61 (s, 1 H), 10.10 (s, 1 H).
Synthesis
of 1-(
tert
-Butoxycarbonyl)-2-chloro-3-formylindole (3)
Equimolar
amounts of 2-chloro-3-formylindole (2;
10 mmol, 1.79 g) and Boc2O (10 mmol, 2.18 g) were stirred
in the presence of catalytic amount of DMAP (0.12 g) and Et3N (0.10
g) at 0-5 ˚C for 1 h using CH2Cl2 (15
mL) as solvent. The solvent was evaporated under reduced pressure,
and
the solid compound obtained was purified
by column chromatography using PE-EtOAc (9:1) as eluent.
The product 3 was obtained in 70% yield
(1.20 g) as colorless crystals; mp 89-90 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.72 (s,
9 H), 7.26-7.40 (m, 2 H), 8.02-8.06 (m, 1 H),
8.27-8.30 (m, 1 H), 10.29 (s, 1 H).
Synthesis of 1-(
tert
-Butoxycarbonyl)-2-diethylamino-3-formylindole (5a)
Equimolar
amounts of 3 (10 mmol 2.79 g), Et2NH
(4a; 10 mmol, 0.72 g), and Et3N
(10 mmol, 1.01g) were treated at r.t. for 4 h using CH2Cl2 (10
mL) as solvent. The solvent was evaporated under reduced pressure,
and the compound 5a obtained was purified
by preparative TLC using PE-EtOAc (8:2) as eluent. The
compound was not crystallized and used directly in the next step;
yield 1.98 g (71%). ¹H NMR (300 MHz,
CDCl3): δ = 1.17 (t, 6 H), 1.71 (s,
9 H), 3.43 (q, 4 H), 7.22-7.31 (m, 2 H), 7.82-7.85
(m, 1 H), 8.20-8.23 (m, 1 H), 10.16 (s, 1 H). Similarly
compounds 5b-e were
synthesized and characterized.
Synthesis
of Compound 7a via Knoevenagel Condensation
To equimolar
amounts of 1-(tert-butoxycarbonyl)-2-diethylamino-3-formylindole
(5a; 5 mmol, 1.5 g) and malononitrile (6a; 5 mmol, 0.33 g) in EtOH (10 mL) was added
a catalytic amount of piperidine (1 drop), and the resulting solution
was stirred for 30 min. The resultant solid was filtered washed
with small amount of EtOH and dried. The bright yellow product 7a was obtained in pure form. Yield 1.20
g (80%); mp 122-123 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.18 (t,
6 H), 1.70 (s, 9 H), 3.43 (q, 4 H), 7.26-7.38 (m, 2 H),
7.74 (s, 1 H), 7.82-7.85 (m, 1 H), 7.96-7.98 (m,
1 H).
Synthesis of α-Carboline
8a from 7a under Thermolytic Conditions
Compound 7a (2 mmol, 0.73 g) was heated at 80-90 ˚C
for 1 h using DMF (5 mL) as solvent (the conversion was monitored
by TLC). The reaction mixture was poured into H2O and
the solid filtered off. The compound was purified by column chromatography
using PE-EtOAc (6:4) as eluent to obtain 8a as
a yellow solid; yield 0.62 g (85%); mp 219-220 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.25-1.35
(m, 6 H), 1.70 (s, 9 H), 3.48-3.58 (m, 3 H), 4.57 (s, 2
H), 7.15-7.26 (m, 2 H), 7.61-7.65 (m, 2 H). ¹³C
NMR (75 MHz, DMSO): δ = 13.46, 14.20, 28.42, 39.77,
40.05, 40.33, 47.31, 61.82, 99.22, 110.46, 119.23, 121.34, 121.95,
122.74, 125.45, 135.24, 148.74, 155.37. IR: νmax = 2210,
1736, 1631, 1540. MS: m/z = 363 [M+].
Anal. Calcd (%) for C21H23N4O2:
C, 69.42; H, 6.33; N 15.42. Found: C, 69.65; H, 5.98; N, 15.56.
<A NAME="RD21010ST-22">22</A>
Soledade M.
Pedras C.
Suchy M.
Ahiahonu WK.
Org. Biomol. Chem.
2006,
4:
691