Subscribe to RSS
DOI: 10.1055/s-0030-1259307
Studies on the Lithiation of Hydroxypyrrolidines: Synthesis of Polyhydroxylated Pyrrolidines via Chiral Enecarbamates
Publication History
Publication Date:
05 January 2011 (online)
Abstract
The chiral endocyclic enecarbamate 14 has been obtained by deprotonation-elimination from the N-Boc pyrrolidine 5 (or its racemic counterpart from 15). Efficiently stereocontrolled epoxidation-methanolysis of 14 afforded α-alkoxy carbamates, which undergo completely stereoselective nucleophilic substitutions to give trisubstituted dihydroxypyrrolidines.
Key words
lithiation - LIDAKOR - enecarbamates - oxidations - nucleophilic substitutions - iminosugars
-
1a
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 -
1b
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 -
1c
Yamashita T.Yasuda K.Kizu H.Kameda Y.Watson AA.Nash RJ.Fleet GWJ.Asano N. J. Nat. Prod. 2002, 65: 1875 -
1d
Asano N.Ikeda K.Kasahara M.Arai Y.Kizu H.
J. Nat. Prod. 2004, 67: 846 -
1e
Kato A.Kato N.Adachi I.Hollinshead J.Fleet GWJ.Kuriyama C.Ikeda K.Asano N.Nash RJ. J. Nat. Prod. 2007, 70: 993 -
1f
Saludes JP.Lievens SC.Molinski TF. J. Nat. Prod. 2007, 70: 436 -
2a
Iminosugars as Glycosidase Inhibitors: Nojirimycin
and Beyond
Stütz AE. Wiley-VCH; Weinheim: 1998. -
2b
Nash RJ. In Bioactive Natural Products 2nd ed.:Colegate SM.Molyneux RJ. CRC; Boca Raton: 2008. p.407-420 -
2c
Asano N. Glycobiology 2003, 13: 93R ; and references cited therein -
2d
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 -
2e
Vasella A.Heightman TD. Angew. Chem. Int. Ed. 1999, 38: 750 -
2f
Gloster TM.Davies GJ. Org. Biomol. Chem. 2010, 8: 305 -
3a
Iminosugars: from Synthesis to Therapeutic Applications
Compain P.Martin OR. Wiley-VCH; Weinheim: 2007. -
3b
Asano N. Curr. Top. Med. Chem. 2003, 3: 471 ; and references cited therein -
3c
Zou W. Curr. Top. Med. 2005, 5: 1363 -
3d
Mizushina Y.Xu X.Asano N.Kasai N.Kato A.Takemura M.Ashara H.Linn S.Sugawara F.Yoshida H.Sakaguchi K. Biochem. Biophys. Res. Commun. 2003, 304: 78 -
3e
Fiaux H.Popowycz F.Favre S.Schuetz C.Vogel P.Gerber-Lemaire S.Juillerat-Jeanneret L. J. Med. Chem. 2005, 48: 4237 -
3f
Liang P.-H.Cheng W.-C.Lee Y.-L.Yu H.-P.Wu Y.-T.Lin Y.-L.Wong C.-H. ChemBioChem 2006, 7: 165 -
3g
Robina I.Moreno-Vargas AJ.Carmona AT.Vogel P. Curr. Drug Metab. 2004, 5: 329 -
4a
Michael JP. Nat. Prod. Rep. 2000, 17: 579 -
4b
Elbein AD.Molyneux RJ. Comprehensive Natural Products Chemistry Vol. 3:Barton D.Nakanishi K. Elsevier; Amsterdam: 1999. p.129 -
4c
Lillelund VH.Jensen HH.Liang XF.Bols M. Chem. Rev. 2002, 102: 515 -
4d
Michael JP. In Alkaloids Vol. 55:Cordell GA. Academic Press; Oxford: 2001. p.99-258 -
4e
Compain P.Chagnault V.Martin OR. Tetrahedron: Asymmetry 2009, 20: 672 -
4f
Davis BG. Tetrahedron: Asymmetry 2009, 20: 652 -
4g
Merino P.Delso I.Marca E.Tejero T.Matute R. Curr. Chem. Biol. 2009, 3: 253 -
4h
Merino P.Tejero T.Delso I. Curr. Med. Chem. 2008, 15: 954 -
4i
Pearson MSM.Mathe-Allainmat M.Fargeas V.Lebreton J. Eur. J. Org. Chem. 2005, 2159 -
4j
Robina I.Vogel P. Synthesis 2005, 675 -
4k
El-Ashry E.-SH.El Nemr A. Carbohydr. Res. 2003, 338: 2265 -
4l
Asano N.Hashimoto H. Glycoscience 2001, 3: 2541 - For reviews, see:
-
5a
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 -
5b
Beak P.Basu A.Gallagher DJ.Park YS.Thayumanavan S. Acc. Chem. Res. 1996, 29: 552 -
6a
Kerrick ST.Beak P. J. Am. Chem. Soc. 1991, 113: 9708 -
6b
Beak P.Kerrick ST.Wu S.Chu J. J. Am. Chem. Soc. 1993, 116: 3231 -
7a
Dearden MJ.Firkin CR.Hermet J.-PR.O’Brien P. J. Am. Chem. Soc. 2002, 124: 11870 -
7b
O’Brien P.Wiberg KB.Bailey WF.Hermet J.-PR.McGrath MJ. J. Am. Chem. Soc. 2004, 126: 15480 -
7c
Carbone G.O’Brien P.Hilmersson G. J. Am. Chem. Soc. 2010, 132: 15445 -
7d
O’Brien P. Chem. Commun. 2008, 655 -
8a
Giles M.Hadley MS.Gallagher T. J. Chem. Soc., Chem. Commun. 1990, 831 - The same behavior has been reported for 3-methoxypiperidines:
-
8b
Beak P.Lee WK. J. Org. Chem. 1993, 58: 1109 -
9a
Cardona F.Goti A.Brandi A. Eur. J. Org. Chem. 2007, 1551 -
9b
Brandi A.Cardona F.Cicchi S.Cordero FM.Goti A. Chem. Eur. J. 2009, 15: 7808 -
9c
Marradi M.Cicchi S.Delso I.Rosi L.Tejero T.Merino P.Goti A. Tetrahedron Lett. 2005, 46: 1287 -
9d
Goti A.Cicchi S.Mannucci V.Cardona F.Guarna F.Merino P.Tejero T. Org. Lett. 2003, 5: 4235 -
9e
Merino P.Delso I.Tejero T.Cardona F.Goti A. Synlett 2007, 2651 -
9f
Merino P.Delso I.Tejero T.Cardona F.Marradi M.Faggi E.Parmeggiani C.Goti A. Eur. J. Org. Chem. 2008, 2929 -
9g
Delso I.Marca E.Mannucci V.Tejero T.Goti A.Merino P. Chem. Eur. J. 2010, 16: 9910 -
9h
Delso I.Tejero T.Goti A.Merino P. Tetrahedron 2010, 66: 1220 -
9i
Cardona F.Faggi E.Liguori M.Cacciarini A.Goti A. Tetrahedron Lett. 2003, 44: 2315 -
9j
Cicchi S.Marradi M.Vogel P.Goti A.
J. Org. Chem. 2006, 71: 1614 -
9k
Cardona F.Parmeggiani C.Faggi E.Bonaccini C.Gratteri P.Sim L.Gloster TM.Roberts S.Davies GJ.Rose DR.Goti A. Chem. Eur. J. 2009, 15: 1627 -
9l
Parmeggiani C.Martella D.Cardona F.Goti A. J. Nat. Prod. 2009, 72: 2058 -
9m
Bonaccini C.Chioccioli M.Parmeggiani C.Cardona F.Lo Re D.Soldaini G.Vogel P.Bello C.Goti A.Gratteri P. Eur. J. Org. Chem. 2010, 5574 -
9n
Marradi M.Corsi M.Cicchi S.Bonanni M.Cardona F.Goti A. Heterocycles 2009, 79: 883 -
10a
Bonanni M.Soldaini G.Faggi C.Goti A.Cardona F. Synlett 2009, 747 -
10b
Goti A.Cardona F.Brandi A.Picasso S.Vogel P. Tetrahedron: Asymmetry 1996, 7: 1659 -
11a
Goti A.Cicchi S.Cacciarini M.Cardona F.Fedi V.Brandi A. Eur. J. Org. Chem. 2000, 3633 -
11b
McCaig AE.Meldrum KP.Wightman RH. Tetrahedron 1998, 54: 9429 -
12a
Cicchi S.Goti A.Brandi A. J. Org. Chem. 1995, 60: 4743 -
12b
Nagel U.Kinzel E.Andrade J.Prescher G. Chem. Ber. 1986, 119: 3326 - 13
Pandey G.Chakrabarti D. Tetrahedron Lett. 1996, 37: 2285 - 14
Sunose M.Peakman TM.Charmant JPH.Gallagher T.Macdonald SJF. Chem. Commun. 1998, 1723 -
15a
Schlosser M. J. Organomet. Chem. 1967, 8: 9 -
15b
Mordini A. In Comprehensive Organometallic Chemistry II Vol. 11:Abel EW.Stone FGA.Wilkinson G.McKillop A. Pergamon; Oxford: 1995. p.93-128 -
15c
Mordini A.Valacchi M. Science of SynthesisTrost BM.Snieckus V.Majewski M. Thieme; Stuttgart: 2006. Chap. 8.3. -
15d
Mordini A. In Comprehensive Organometallic Chemistry III 9:Crabtree RH.Mingos DMP.Knochel P. Pergamon Press; Oxford: 2007. p.3 - 16
Margot C.Schlosser M. Tetrahedron Lett. 1985, 26: 1035 - 17
Norton Matos M.Afonso CAM.Batey RA. Tetrahedron 2005, 61: 1221 ; and references cited therein -
19a
Crandall JK.Apparu M. Org. React. 1983, 29: 345 -
19b
Mordini A.Ben Rayana E.Margot C.Schlosser M. Tetrahedron 1990, 46: 2401 -
19c
Degl’Innocenti A.Mordini A.Pecchi S.Pinzani D.Reginato G.Ricci A. Synlett 1992, 753 -
19d
Mordini A.Valacchi M.Pecchi S.Degl’Innocenti A.Reginato G. Tetrahedron Lett. 1996, 37: 5209 -
19e
Mordini A.Pecchi S.Capozzi G.Capperucci A.Degl’Innocenti A.Reginato G.Ricci A. J. Org. Chem. 1994, 59: 4784 -
19f
Bigi A.Mordini A.Thurner A.Faigl F.Poli G.Toke L. Tetrahedron: Asymmetry 1998, 9: 2293 -
19g
Mordini A.Russo F.Valacchi M.Zani L.Degl’Innocenti A.Reginato G. Tetrahedron 2002, 58: 7153 -
19h
Mordini A.Sbaragli L.Valacchi M.Russo F.Reginato G. Chem. Commun. 2002, 778 - 20
Sturmer R.Schafer B.Wolfart V.Stahr H.Kazmaier U.Helmchen G. Synthesis 2001, 46 - 21
Okada T.Sato H.Tsuji T.Tsushima T.Nakai H.Yoshida T.Matsuura S. Chem. Pharm. Bull. 1993, 41: 132 -
22a
Hodgson DM.Miles T.Witherington J. Synlett 2002, 310 -
22b
Hodgson DM.Stent MA.Wilson FX. Org. Lett. 2001, 3: 3401 -
23a
Correia CRD.de Faria AR.Carvalho ES. Tetrahedron Lett. 1995, 36: 5109 -
23b
Carpes MJS.Miranda PCML.Correia CRD. Tetrahedron Lett. 1997, 38: 1869 -
23c
Miranda PCML.Correia CRD. Tetrahedron Lett. 1999, 40: 7735 -
23d
de Faria AR.Salvador EL.Correia CRD. J. Org. Chem. 2002, 67: 3651 -
23e
Valle MS.Retailleau P.Correia CRD. Tetrahedron Lett. 2008, 49: 1957 -
24a
Severino EA.Correia CRD. Org. Lett. 2000, 2: 3039 -
24b
Carpes MJS.Correia CRD. Synlett 2000, 1037 -
24c
Severino EA.Costenaro ER.Garcia ALL.Correia CRD. Org. Lett. 2003, 5: 305 -
24d
Garcia ALL.Correia CRD. Tetrahedron Lett. 2003, 44: 1553 -
25a
Burgess LE.Gross EKM.Jurka J. Tetrahedron Lett. 1996, 37: 3255 -
25b
Norton Matos MRP.Afonso CAM.Batey RA. Tetrahedron Lett. 2001, 42: 7007 -
25c
Sunose M.Anderson KM.Orpen AG.Gallagher T.Macdonald SJF. Tetrahedron Lett. 1998, 39: 8885 -
25d
Sugisaki CH.Carroll PJ.Correia CRD. Tetrahedron Lett. 1998, 39: 3413 -
25e
Pohlit AM.Correia CRD. Heterocycles 1997, 45: 2321 -
25f
Le Corre L.Kizirian J.-C.Levraud C.Boucher J.-L.Bonnet V.Dhimane H. Org. Biomol. Chem. 2008, 6: 3388 -
26a For
a review on directing effects, see:
Henbest HB.Wilson RAL. J. Chem. Soc. 1959, 1958 -
26b
Hoveyda AH.Evans DA.Fu GC. Chem. Rev. 1993, 93: 1307 - 27
Palucki M.Pospisil PJ.Zhang W.Jacobsen EN. J. Am. Chem. Soc. 1994, 116: 9333 -
28a
Speckamp WN.Hiemstra H. Tetrahedron 1985, 41: 4367 -
28b
Yamamoto Y.Nakada T.Nemoto H. J. Am. Chem. Soc. 1992, 114: 121 -
28c
Martin SF.Corbett JW. Synthesis 1992, 55 -
28d
Tanaka K.Sawanishi H. Tetrahedron 1998, 54: 10029 -
28e
Katoh T.Nagata Y.Kobayashi Y.Arai K.Minami J.Terashima S. Tetrahedron 1994, 50: 6221 -
28f
Seebach D.Renaud P. Helv. Chim. Acta 1986, 69: 1704 -
28g
Dhudshia B.Cooper BFT.Macdonald CLB.Thadani AN. Chem. Commun. 2009, 463 - For excellent reviews on the chemistry of N-acyliminium ions, see:
-
29a
Hiemstra H.Speckamp WN. In Comprehensive Organic Synthesis Vol. 2:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.1047 -
29b
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 - For related reactions on α-alkoxy amides, see, for example:
-
30a
Huang PQ.Wang SL.Ye JL.Ruan YP.Huang YQ.Zheng H.Gao JX. Tetrahedron 1998, 54: 12547 -
30b
Zhou X.Liu W.-J.Ye J.-L.Huang P.-Q. Tetrahedron 2007, 63: 6346 -
30c
Yoda H.Shirakawa K.Takabe K. Chem. Lett. 1991, 489 -
30d
Sengoku T.Suzuki T.Kakimoto T.Takahashi M.Yoda H. Tetrahedron 2009, 65: 2415 - 33
Ungureanu I.Bologa C.Chayer S.Mann A. Tetrahedron Lett. 1999, 40: 5315
References and Notes
Enecarbamate 13
A
Schlenk tube was charged with a solution of pyrrolidine 5 (1.07 g, 2.5 mmol) in dry THF (6 mL)
under a nitrogen atmosphere. The solution was cooled at -78 ˚C
and TMEDA (0.75 mL, 5.0 mmol) and a cyclohexane solution of s-BuLi (1.4 M, 3.6 mL, 5.0 mmol) were
added. The mixture was stirred at -78 ˚C
for 1 h, then added with dry MeOH (1 mL) and left to warm to r.t.
The reaction was quenched with H2O (6 mL) and the mixture
extracted with Et2O (3 × 10
mL). The collected organic phases were dried over Na2SO4,
then filtered and concentrated to afford crude 13 (1.10
g, 100%, 1.5:1 mixture of two rotamers in CDCl3),
which was used without further purification due to the easy elimination
of the silyloxy group under acidic conditions. ¹H
NMR (200 MHz, CDCl3): δ = 6.81 and
6.67 (d, J = 3.6
Hz, 1 H), 5.03 (m, 2 H), 3.80-3.46 (m, 2 H), 1.48 (s, 9
H), 0.91 and 0.89 (s, 9 H), 0.09 and 0.08 (s, 6 H). ¹³C
NMR (50 MHz, CDCl3): δ = 151.5 (s), 150.9
(s), 132.4 (d), 109.8 (d), 80.4 (s), 73.6 (d), 72.5 (d), 54.6 (t),
54.1 (t), 28.2 (q), 25.7 (q), 25.6 (q), 18.0 (s), 17.9 (s), -4.6
(q), -4.7 (q).
Enecarbamate
14
A Schlenk tube was charged with a solution of pyrrolidine 13 (1.0 g, 3.3 mmol) in dry THF (6 mL)
under a nitrogen atmosphere. The solution was added with TBAF in
dry THF (1.1 M, 6.2 mL, 7.26 mmol). The resulting solution was left under
stirring at r.t. for 1 h. The mixture was quenched with H2O
(6 mL), extracted with Et2O (3 ¥ 10
mL), and the collected organic phases were dried over Na2SO4.
After filtration, the solution was concentrated and purified by column
chromatography (PE-EtOAc-concd NH3,
4:0.9:1) to afford compound 14 (0.372 g,
62%, 1:1 mixture of two rotamers in CDCl3). [α]D
²5 -167.7
(c 1.9, CHCl3). ¹H
NMR (200 MHz, CDCl3): δ = 6.78 and
6.66 (s, 1 H), 5.14 (br s, 1 H), 4.84 (ddd, J = 7.8,
3.0, 2.8 Hz, 1 H), 3.75-3.53 (m, 2 H), 2.75 (br s, 1 H),
1.43 (s, 9 H). ¹³C NMR (50 MHz, CDCl3): δ = 151.6
(s), 151.0 (s), 133.0 (d), 109.7 (d), 80.7 (s), 72.7 (d), 71.7 (d),
54.5 (t), 54.0 (t), 28.2 (q).
For cyanation of a related substrate, see ref. 25e.
32
Synthesis of Pyrrolidines
22-24 - General Procedure
A Schlenk
tube was charged with a solution of pyrrolidine 21 (80
mg, 0.17 mmol) in dry CH2Cl2 (6 mL) under
a nitrogen atmosphere. The solution was cooled at -78 ˚C
and the appropriate silylated reagent (trimethylsilylcyanide (0.045
mL, 0.34 mmol), trimethylsilylazide (0.043 mL, 0.34 mmol), or allyltrimethylsilane
(0.054 mL, 0.34 mmol) and BF3˙OEt2 (0.030
mL, 0.24 mmol) were added. The mixture was left at -78 ˚C
under stirring for 1.5-2 h. The solution was quenched with
sat. Na2CO3 (1 mL) and left to warm to r.t.,
then was extracted with CH2Cl2 (3 × 3
mL), and the collected organic phases were dried over Na2SO4.
After filtration and concentration, the crude material was purified by
column chromatography (PE-Et2O, 15:1).
Compound 22: 52% yield, R
f
= 0.11,
white solid, mp 97-99 ˚C. ¹H
NMR (400 MHz, CDCl3, 2:1 mixture of two rotamers): δ = 4.55
and 4.38 (d, J = 6.8
Hz, 1 H), 4.16-4.11 (m, 2 H), 3.44 (d, J = 12.0
Hz, 1 H), 3.36 (dd, J = 11.6,
3.6 Hz, 1 H), 1.51 and 1.47 (s, 9 H), 0.95-0.92 (m, 18
H), 0.16-0.09 (m, 12 H). ¹³C
NMR (100 MHz, CDCl3): δ = 153.6 (s), 153.3
(s), 116.0 (s), 81.8 (s), 81.1 (s), 73.5 (d), 73.0 (d), 72.4 (d),
71.4 (d), 52.6 (d), 51.7 (d), 50.2 (t), 49.7 (t), 28.3 (q), 25.7
(q), 25.6 (q), 18.1 (s), -4.4 (q), -4.6 (q), -4.8
(q).
Compound 23: 56% yield, R
f
= 0.47,
colorless oil. ¹H NMR (400 MHz, CDCl3,
2:1 mixture of two rotamers): δ = 5.18 and 5.05
(d, J = 2.0
Hz, 1 H), 4.20-4.16 (m, 1 H), 3.81 (dd, J = 3.4,
2.0 Hz, 1 H), 3.50 and 3.44 (dd, J = 9.9,
6.3 Hz, 1 H), 3.36 and 3.28 (dd, J = 9.9,
7.5 Hz, 1 H), 1.52 and 1.50 (s, 9 H), 0.90 and 0.89 (s, 18 H), 0.09
(s, 12 H). ¹³C NMR (100 MHz, CDCl3): δ = 154.2
(s), 81.3 (s), 80.6 (s), 78.9 (d), 78.7 (d), 77.4 (d), 76.6 (d),
70.7 (d), 70.2 (d), 49.9 (t), 49.4 (t), 28.2 (q), 25.8 (q), 25.6
(q), 18.1 (s), 18.0 (s), -4.5 (q), -4.7 (q), -4.9
(q), -5.1 (q).
Compound 24:
77% yield, R
f
= 0.26,
colorless oil. ¹H NMR (400 MHz, CDCl3,
2:1 mixture of two rotamers): δ = 6.10-5.79
(m, 1 H), 4.98 (d, J = 16.2
Hz, 1 H), 4.92 (d, J = 9.2
Hz, 1 H), 4.08-4.04 (m, 1 H), 4.02-3.98 (m. 1
H), 3.83 and 3.68 (q, J = 5.8
Hz, 1 H), 3.52 (dd, J = 12.0,
4.8 Hz, 1 H), 3.27 and 3.20 (d, J = 12.0
Hz, 1 H), 2.74-2.35 (m, 2 H), 1.45 (s, 9 H), 0.91-0.89
(s, 18 H), 0.08-0.05 (s, 12 H). ¹³C
NMR (100 MHz, CDCl3): δ = 155.0 (s),
138.0 (d), 137.7 (d), 115.1 (t), 79.6 (s), 73.8 (d), 73.5 (d), 71.8
(d), 59.5 (d), 59.2 (d), 52.5 (t), 35.0 (t), 28.4 (q), 26.0 (q),
25.8 (q), 18.3 (s), 18.0 (s), -4.6 (q), -4.8 (q).