Synlett 2011(3): 396-398  
DOI: 10.1055/s-0030-1259321
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Substituted Linear Ter- and Quaterphenyls via Dewar Benzenes

Štěpánka Jankováa, Simona Hybelbauerováb, Martin Kotora*a,c
a Department of Organic and Nuclear Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic
Fax: +420(221)951324; e-Mail: kotora@natur.cuni.cz;
b Department of Teaching and Didactics of Chemistry, Faculty of Science, Charles University in Prague, Albertov 3, 128 43 Praha 2, Czech Republic
c Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
Further Information

Publication History

Received 3 November 2010
Publication Date:
13 January 2011 (online)

Abstract

Tetramethylcyclobutadiene-AlCl3 complex reacted with bisalkynes possessing phenylene and biphenylene spacer giving rise to mono- and bis-Dewar benzenes. The rearrangement of the bis-Dewar benzene derivatives under thermal conditions (150 ˚C) yielded the corresponding linear ter- and quaterphenyl compounds possessing substituted terminal benzene rings. A mixture of an alkynylbiphenyl and a terphenyl was also obtained by the reaction of tetramethylzirconacyclopentadiene with bisalkynylbenzene in 13% combined yield.

    References and Notes

  • 1a van Tamelen EE. Pappas SP. J. Am. Chem. Soc.  1962,  84:  3789 
  • 1b van Tamelen EE. Pappas SP. J. Am. Chem. Soc.  1963,  85:  3297 
  • 1c van Tamelen EE. Pappas SP. Kirk KL. J. Am. Chem. Soc.  1971,  93:  6092 
  • 2a Schaefer W. Angew. Chem.  1966,  78:  716 
  • 2b Schaefer W. Criegee R. Askani R. Gruener H. Angew. Chem.  1967,  79:  54 
  • 3a Krüger C. Roberts PJ. Tsay Y.-H. J. Organomet. Chem.  1974,  78:  69 
  • 3b Driessen PBJ. Hogeveen H. J. Am. Chem. Soc.  1978,  100:  1193 
  • 4 Marsella MJ. Esrassi S. Wang L.-S. Yoon K. Synlett  2004,  191 
  • 5a Dopper JH. Greijdanus B. Wynberg H. J. Am. Chem. Soc.  1975,  97:  216 
  • 5b Dopper JH. Greijdanus B. Luxman D. Wynberg H. J. Chem. Soc., Chem. Commun.  1975,  972 
  • 6 Janková Š. Dračínský M. Císařová I. Kotora M. Eur. J. Org. Chem.  2008,  47 
  • 7 Janková Š. Císařová I. Uhlík F. Štěpnička P. Kotora M. Dalton Trans.  2009,  3137 
  • 8 Marsella MJ. Meyer MM. Tham FS. Org. Lett.  2001,  3:  3847 
  • 9 Anastasia L. Negishi E. Org. Lett.  2001,  3:  3111 
  • 10a

    Dimethyl 3,3′′,4,4′′,5,5′′,6,6′′-octamethyl-1,1′:4′,1′′-terphenyl-2,2′′-dicarboxylate (7a)
    ¹H NMR (600 MHz, CDCl3, Me4Si): δ = 2.02 (s, 6 H), 2.25-2.29 (m, 18 H), 3.43 (s, 3 H), 3.56 (s, 3 H), 7.17-7.18 (m, 4 H). ¹³C NMR (150 MHz, CDCl3, Me4Si): δ = 16.22, 16.25, 16.75, 17.50, 17.53, 17.55, 17.78, 51.38, 51.59, 129.07, 129.13, 129.42, 132.04, 132.10, 132.76, 133.00, 134.59, 134.69, 136.12, 136.32, 136.55, 136.69, 138.79, 138.96, 170.82, 170.91. IR (CHCl3): ν = 2962, 2923, 2852, 1725, 1263, 1099, 1018, 801 cm. MS (EI): m/z (%) = 459 (12) [M+], 458 (41), 427 (30), 426 (100), 395 (23), 379 (22), 351 (12), 295 (22). HRMS: m/z calcd for C30H34O4: 458.2457; found: 458.2439. R f = 0.65 (hexane-EtOAc = 1:1).

  • 10b

    Dimethyl 3,3′′,4,4′′,5,5′′,6,6′′-octamethyl-1,1′:4′,1′′:4′′,1′′′-quaterphenyl-2,2′′-dicarboxylate (7b)
    Mp 228-230 ˚C (CH2Cl2). ¹H NMR (600 MHz, CDCl3, Me4Si): δ = 2.07 (s, 3 H), 2.26-2.29 (m, 18 H), 3.47 (s, 6 H), 7.26-7.27 (m, 4 H), 7.64-7.66 (m, 4 H). ¹³C NMR (150 MHz, CDCl3, Me4Si): δ = 16.28, 16.79, 17.59, 17.82, 51.57, 126.28, 129.37, 129.71, 130.07, 132.18, 132.83, 134.71, 136.05, 136.72, 139.08, 139.34. IR (CHCl3): ν = 3077, 3029, 2984, 2950, 2222, 1727, 1605, 1434, 1378, 1292, 1201, 1174, 1004, 819, 732 cm. MS (EI): m/z (%) = 535 (14) [M+], 534 (43), 319 (17), 318 (100), 288 (12), 287 (71), 260 (33), 229 (24), 202 (22), 200(11), 149 (13). HRMS: m/z calcd for C36H38O4: 534.2770; found: 534.2764. R f = 0.43 (hexane-EtOAc = 1:1).

  • 11a Takahashi T. Xi ZF. Kotora M. J. Chem. Soc., Chem. Commun.  1995,  361 
  • 11b Takahashi T. Xi ZF. Yamazaki A. Liu YH. Nakajima K. Kotora M. J. Am. Chem. Soc.  1998,  120:  1672 
  • 11c Takahashi T. Tsai FY. Li Y. Nakajima K. Kotora M. J. Am. Chem. Soc.  1999,  121:  11093 
  • 11d Dufková L. Kotora M. Císařová I. Eur. J. Org. Chem.  2005,  2491 
  • 12 Friebolin H. Basic One- and Two-Dimensional NMR Spectroscopy   Wiley-VCH; Weinheim: 2005.  p.305 
  • 13a Kistiakowski GB. Smith WR. J. Am. Chem. Soc.  1936,  58:  1043 
  • 13b Wolf C. König WA. Roussel C. Liebigs Ann.  1995,  781