References and Notes
1a
Worch C.
Mayer AC.
Bolm C.
Synthesis and Use of Chiral Sulfoximines, In Organosulfur Chemistry in Asymmetric Synthesis
Toru T.
Bolm C.
Wiley-VCH;
Weinheim:
2008.
p.209-229
1b
Okamura H.
Bolm C.
Chem. Lett.
2004,
33:
482
1c
Harmata M.
Chemtracts
2003,
16:
660
1d
Reggelin M.
Zur C.
Synthesis
2000,
1
2a
Harmata M.
Rayanil K.-O.
Espejo VR.
Barnes CL.
J. Org. Chem.
2009,
74:
3214
2b
Harmata M.
Cai Z.
Chen Y.
J.
Org. Chem.
2009,
74:
5559
2c
Harmata M.
Huang C.
Chen Y.
Zheng P.
Gao X.
Ying W.
Synlett
2008,
2051
2d
Harmata M.
Rayanil K.-O.
Gomes MG.
Zheng P.
Calkins NL.
Kim S.-Y.
Fan Y.
Bumbu V.
Lee DR.
Wacharasindhu S.
Hong X.
Org. Lett.
2005,
7:
143
2e
Harmata M.
Hong X.
Org. Lett.
2005,
7:
3581
2f
Harmata M.
Hong X.
J. Am. Chem. Soc.
2003,
125:
5754
2g
Harmata M.
Pavri N.
Angew. Chem. Int. Ed.
1999,
38:
2419
2h
Harmata M.
Claassen RJ.
Tetrahedron
Lett.
1991,
32:
6497
2i
Harmata M.
Tetrahedron
Lett.
1989,
30:
437
3a
Hwang KJ.
Logusch EW.
Tetrahedron Lett.
1987,
28:
4149
3b
Bolm C.
Hackenberger CPR.
Simic O.
Verrucci M.
Müller D.
Bienewald F.
Synthesis
2002,
879
3c
Bolm C.
Müller D.
Dalhoff C.
Hackenberger
CPR.
Weinhold E.
Bioorg. Med. Chem. Lett.
2003,
13:
3207
3d
Hackenberger CPR.
Raabe G.
Bolm C.
Chem. Eur. J.
2004,
10:
2942
3e
Cho GY.
Okamura H.
Bolm C.
J.
Org. Chem.
2005,
70:
2346
4a
Barajas JGH.
Mendez LYV.
Kouznetsov VV.
Stashenko EE.
Synthesis
2008,
377
4b
Maki T.
Ishihara K.
Yamamoto H.
Tetrahedron
2007,
63:
8645
4c
Arnold K.
Davies B.
Giles RL.
Grosjean C.
Smith GE.
Whiting A.
Adv. Synth. Catal.
2006,
348:
813
4d
Tang P.
Org.
Synth.
2005,
81:
262
4e
Latta R.
Springsteen G.
Wang B.
Synthesis
2001,
1611
5a
Zoubi RM.
Marion O.
Hall DG.
Angew. Chem. Int. Ed.
2008,
47:
2876
5b
Ishihara K.
Ohara S.
Yamamoto H.
Org.
Synth.
2003,
79:
176
6
Brandt J.
Gais H.-J.
Tetrahedron: Asymmetry
1997,
8:
909
7
Marcelli T.
Angew.
Chem. Int. Ed.
2010,
49:
6840
8
Typical Procedure:
A flame-dried, 50-mL single-neck round-bottomed flask was equipped
with a Dean-Stark trap topped with a reflux condenser fitted
with nitrogen inlet, and a Teflon-coated magnetic stirring bar.
The reaction vessel was charged with racemic 1 (1
g, 6.45 mmol), carboxylic acid (7.09 mmol, 1.1 equiv), boric acid
(310 mg, 0.8 equiv, 5.12 mmol) and toluene (20 mL, 0.32 M). The
apparatus (save the condenser) was wrapped in aluminum foil to prevent
heat loss. The reaction mixture was heated at reflux for 24 h, and
H2O (ca. 0.1 mL) was collected in the Dean-Stark
trap. The remaining volume of toluene in the flask
was
ca. 10 mL, corresponding to approximately 0.645 M concentration
of the reactants. The mixture was allowed to cool at ambient temperature
and worked up in one of two ways.
The reaction mass was
dissolved in EtOAc (50 mL) and washed with sat. NaHCO3 (3 × 50
mL) solution to remove any unreacted carboxylic acid and boric acid
present. The collected organic layer was washed once with 3 N HCl
(50 mL), followed by brine (50 mL). The organic layers were collected,
dried with MgSO4 and filtered and the solvent was removed
under vacuum. The crude product was pure in many cases and did not
need further purification.
In an alternative workup, the
reaction mass was dissolved in EtOAc (50 mL) and washed with brine
(50 mL) and the organic layer was dried with MgSO4 and
filtered and the solvent was removed under vacuum. The crude product
was purified by flash column chromatography using 20-40% EtOAc-hexanes
mixtures to afford pure product.
9 Data for selected compounds: Compound 3: crystalline white solid; R
f
0.48
(40% EtOAc-hexanes); mp 94.5-98 ˚C; yield:
80%. IR (KBr): 3313, 3056, 2943, 2916, 1667, 1488, 1205,
981, 830, 744 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.86 (d, J = 7.5 Hz, 2 H), 7.66 (t, J = 7.5 Hz, 1 H), 7.54 (t,
J = 7.5 Hz, 2 H),
7.30 (t, J = 7.5 Hz, 2 H), 6.98-6.93
(m, 3 H), 4.67 (s, 2 H), 3.38 (s, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 177.3, 158.2,
138.2, 133.9, 129.6, 129.3, 127.0, 121.1, 114.6, 68.9, 44.0. HRMS: m/z [M + Na+] calcd
for C15H15NO3S: 312.0664; found:
312.0655. Compound 7: white solid; R
f
0.48
(40% EtOAc-hexanes); mp 82.5-84 ˚C; yield:
75%. IR (KBr): 3059, 3017, 2924, 1634, 1445, 1209, 974,
837, 743 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.83 (d, J = 7.5 Hz, 2 H), 7.63 (t, J = 7.5 Hz, 1 H), 7.54 (t, J = 7.5 Hz, 2 H), 7.29-7.33
(m, 4 H), 7.23 (m, 1 H), 3.70 (s, 2 H), 3.28 (s, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 180.2, 138.6, 135.8,
133.6, 129.5, 129.4, 128.2, 128.2, 127.0, 126.5, 57.8, 57.6, 47.0,
46.6. HRMS: m/z [M + Na+] calcd
for C15H15NO2S: 296.0716; found:
296.0713. Compound 11: fluffy white solid; R
f
0.45
(40% EtOAc-hexanes); mp 131-133 ˚C;
yield: 70%. IR (KBr): 3026, 3037, 2926, 1649, 1445, 1165,
973, 837, 744 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.76 (d, J = 7.5 Hz, 2 H), 7.63 (t, J = 7.5 Hz, 1 H), 7.54 (t, J = 7.5 Hz, 2 H), 7.29-7.33
(m, 10 H), 5.12 (s, 1 H), 3.27 (s, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 180.2, 140.0,
139.9, 138.5, 133.6, 129.4, 128.87, 128.86, 128.2, 127.0, 61.3,
43.9. HRMS: m/z [M + Na+] calcd
for C21H19NO2S: 372.1029; found:
372.1019. Compound 15: white solid; R
f
0.38
(40% EtOAc-hexanes); mp 59-60.5 ˚C; yield:
64%. IR (KBr): 3060, 3024, 2964, 2931, 1626, 1437, 1354,
1200, 979, 832, 743 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.97 (d, J = 7.5 Hz, 2 H), 7.68 (t, J = 7.5 Hz, 1 H), 7.58 (t, J = 7.5 Hz, 2 H), 3.34 (s, 3
H), 2.43 (q, J = 7.5 Hz, 2 H),
1.14 (t, J = 7.5 Hz, 3 H). ¹³C
NMR (125 MHz, CDCl3): δ = 183.5, 138.9,
133.6, 129.5, 127.0, 44.1, 32.7, 9.6. HRMS: m/z [M + Na+] calcd
for C10H13NO2S: 234.0559; found:
234.0560.
10 Crystallographic data for 3 (CCDC 794098), 5 (CCDC 794100), 13 (CDDC 794099) and 19 (CCDC
794097) may be obtained from the Cambridge Crystallographic Data Centre
(www.ccdc.cam.ac.uk/data_request/cif
or by E-mail to data_request@ccdc.cam.ac.uk).