Subscribe to RSS
DOI: 10.1055/s-0030-1259905
Asymmetric Tandem Reduction of 2-(Aroylmethyl)quinolines with Phosphine-Free Ru-TsDPEN Catalyst
Publication History
Publication Date:
15 March 2011 (online)
Abstract
The phosphine-free ruthenium complex containing chi-ral N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine (TsDPEN) showed excellent stereoselectivity in the tandem asymmetric reduction of 2-(aroylmethyl)quinolines. The reaction involves transfer hydrogenation of aromatic ketones and hydrogenation of quinolines, giving 1,2,3,4-tetrahydroquinoline derivatives with up to 99% ee and 95:5 dr.
Key words
asymmetric catalysis - tandem reaction - quinolines - ruthenium - hydrogenation
- Supporting Information for this article is available online:
- Supporting Information
- For recent reviews, see:
-
1a
Glorius F. Org. Biomol. Chem. 2005, 3: 4171 -
1b
Zhou Y.-G. Acc. Chem. Res. 2007, 40: 1357 -
1c
Kuwano R. Heterocycles 2008, 76: 909 - 2
Wang W.-B.Lu S.-M.Yang P.-Y.Han X.-W.Zhou Y.-G. J. Am. Chem. Soc. 2003, 125: 10536 - For selected recent examples of asymmetric hydrogenation of quinolines, see:
-
3a
Lu S.-M.Han X.-W.Zhou Y.-G. Adv. Synth. Catal. 2004, 346: 909 -
3b
Wang D.-W.Wang X.-B.Wang D.-S.Lu S.-M.Zhou Y.-G.Li Y.-X.
J. Org. Chem. 2009, 74: 2780 -
3c
Wang D.-S.Zhou Y.-G. Tetrahedron Lett. 2010, 51: 3014 -
3d
Xu L.-J.Lam KH.Ji JX.Fan Q.-H.Lo W.-H.Chan ASC. Chem. Commun. 2005, 1390 -
3e
Tang W.-J.Zhu S.-F.Xu L.-J.Zhou Q.-L.Fan Q.-H.Zhou H.-F.Lam K.Chan ASC. Chem. Commun. 2007, 613 -
3f
Wang ZJ.Deng GJ.Li Y.He YM.Tang WJ.Fan QH. Org. Lett. 2007, 9: 1243 -
3g
Reetz M.Li X. Chem. Commun. 2006, 2159 -
3h
Mršić N.Lefort L.Boogers JAF.Minnaard AJ.Feringa BL.de Vries JG. Adv. Synth. Catal. 2008, 350: 1081 -
3i
Tadaoka H.Cartigny D.Nagano T.Gosavi T.Ayad T.Genêt JP.Ohshima T.Ratovelomanana-Vidal V.Mashima K. Chem. Eur. J. 2009, 15: 9990 -
4a
Zhou HF.Li ZW.Wang ZJ.Wang TL.Xu LJ.He YM.Fan Q.-H.Pan J.Gu LQ.Chan ASC. Angew. Chem. Int. Ed. 2008, 47: 8464 -
4b
Wang Z.-J.Zhou H.-F.Wang T.-L.He Y.-M.Fan Q.-H. Green Chem. 2009, 11: 767 -
4c
Li Z.-W.Wang T.-L.He Y.-M.Wang Z.-J.Fan Q.-H.Pan J.Xu L.-J. Org. Lett. 2008, 10: 5265 - For selected examples of asymmetric hydrogenation of other heteroaromatic compounds, see: For indoles and pyrroles:
-
5a
Kuwano R.Sato K.Kurokawa T.Karube D.Ito Y. J. Am. Chem. Soc. 2000, 122: 7614 -
5b
Wang D.-S.Chen Q.-A.Li W.Yu C.-B.Zhou Y.-G.Zhang X. J. Am. Chem. Soc. 2010, 132: 8909 -
5c
Kuwano R.Kashiwabara M.Ohsumi M.Kusano H. J. Am. Chem. Soc. 2008, 130: 808 -
5d For furans, see:
Kaiser S.Smidt SP.Pfaltz A. Angew. Chem. Int. Ed. 2006, 45: 5194 -
5e For pyridines, see:
Legault CY.Charette AB. J. Am. Chem. Soc. 2005, 127: 8966 -
5f For isoquinolines, see:
Lu SM.Wang YQ.Han XW.Zhou Y.-G. Angew. Chem. Int. Ed. 2006, 45: 2260 - For quinoxalines, see:
-
5g
Tang W.-J.Xu L.-J.Fan Q.-H.Wang J.Fan B.-M.Lam K.-H.Chan ASC. Angew. Chem. Int. Ed. 2009, 48: 9135 -
5h
Mršić N.Jerphagnon T.Minnaard AJ.Feringa BL.de Vries JG. Adv. Synth. Catal. 2009, 351: 2549 - 6
Carey ARE.Fukata G.O’Ferrall RAM.Murphy MG. J. Chem. Soc., Perkin Trans. 2 1985, 1711 - For metal complexes containing diamine ligands for asymmetric hydrogenation, see:
-
7a
Ito M.Hirakawa M.Murata K.Ikariya T. Organometallics 2001, 20: 379 -
7b
Ohkuma T.Utsumi N.Tsutsumi K.Murata K.Sandoval CA.Noyori R. J. Am. Chem. Soc. 2006, 128: 8724 -
7c
Ohkuma T.Tsutsumi K.Utsumi N.Arai N.Noyori R.Murata K. Org. Lett. 2007, 9: 255 -
7d
Li C.Xiao J. J. Am. Chem. Soc. 2008, 130: 13208 -
7e
Chen f.Wang T.-L.He Y.-M.Ding Z.-Y.Li Z.-W.Xu L.-J.Fan Q.-H. Chem. Eur. J. 2011, 17: 1109 - 8
Wang X.-B.Wang D.-W.Lu S.-M.Yu C.-B.Zhou Y.-G. Tetrahedron: Asymmetry 2009, 20: 1040 -
9a
Noyori R.Hashiguchi S. Acc. Chem. Res. 1997, 30: 97 -
9b
Hashiguchi S.Fujii A.Takehara J.Ikariya T.Noyori R. J. Am. Chem. Soc. 1995, 117: 7562 - 10
Sidler DR.Sager JW.Bergan JJ.Wells KM.Bhupathy M.Volante RP. Tetrahedron: Asymmetry 1997, 8: 161 - 11 For transition-metal-catalyzed asymmetric
transfer hydrogenation of quinolines in acidic aqueous buffer solution,
see:
Wang C.Li C.Wu X.Pettman A.Xiao J. Angew. Chem. Int. Ed. 2009, 48: 6524
References and Notes
Typical procedure for the Ru-catalyzed asymmetric ATH/AH reactions: Into a 50 mL glass-lined stainless steel reactor with a magnetic stirring bar was charged (R,R)-1b (0.6 mg, 0.001 mmol), substrate 2a (24.7 mg, 0.1 mmol) and degassed EtOH (1 mL) under a nitrogen atmosphere, and the mixture was stirred at r.t. for 24 h. Then, to the reaction mixture was added a solution of 1.0 M TfOH in EtOH (100 µL, 0.001 mmol, 1 mol% cf substrate) under a nitrogen atmosphere. The autoclave was closed, and H2 was initially introduced into the autoclave at a pressure of 50 atm, before being reduced to 1 atm. After this procedure was repeated three times, the autoclave was pressurized with H2 to 50 atm. Subsequently, the mixture was stirred under this H2 pressure at r.t. for another 12 h. After carefully releasing the hydrogen, the mixture was concentrated to afford the crude product. The conversion and diastereoselectivity were determined by ¹H NMR analysis of the crude product. Further purification was performed with a silica gel column (PE-CH2Cl2, 1:1) to give the pure product, (+)-1-phenyl-2-(1,2,3,4-tetrahydroquinolin-2-yl)ethanol (4a). Isolated yield: 94%; >95:5 dr; >99% ee; [α] d ²0 +67.9 (c 1.00, CHCl3); ¹H NMR (300 MHz, CDCl3): δ = 7.38-7.29 (m, 5 H), 7.00-6.95 (m, 2 H), 6.67-6.62 (m, 1 H), 6.49 (d, J = 7.8 Hz, 1 H), 5.02 (t, J = 6.6 Hz, 1 H), 3.55-3.47 (m, 1 H), 2.88-2.69 (m, 2 H), 1.97-1.90 (m, 3 H), 1.88-1.81 (m, 1 H); ¹³C NMR (75 MHz, CDCl3): δ = 143.34, 143.14, 128.30, 127.56, 126.61, 125.70, 124.69, 120.69, 116.73, 113.99, 71.07, 47.79, 43.67, 26.95, 25.15; HRMS (ESI): m/z [M + H]+ calcd for C17H20NO: 254.15394; found: 254.15385.