Synlett 2011(7): 939-942  
DOI: 10.1055/s-0030-1259905
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Asymmetric Tandem Reduction of 2-(Aroylmethyl)quinolines with Phosphine-Free Ru-TsDPEN Catalyst

Tianli Wang, Guanghui Ouyang, Yan-Mei He, Qing-Hua Fan*
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry and Graduate School, Chinese Academy of Sciences, Beijing 100190, P. R. of China
Fax: +86(10)62554449; e-Mail: fanqh@iccas.ac.cn;
Further Information

Publication History

Received 15 December 2010
Publication Date:
15 March 2011 (online)

Abstract

The phosphine-free ruthenium complex containing chi-ral N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine (TsDPEN) showed excellent stereoselectivity in the tandem asymmetric reduction of 2-(aroylmethyl)quinolines. The reaction involves transfer hydrogenation of aromatic ketones and hydrogenation of quinolines, giving 1,2,3,4-tetrahydroquinoline derivatives with up to 99% ee and 95:5 dr.

    References and Notes

  • For recent reviews, see:
  • 1a Glorius F. Org. Biomol. Chem.  2005,  3:  4171 
  • 1b Zhou Y.-G. Acc. Chem. Res.  2007,  40:  1357 
  • 1c Kuwano R. Heterocycles  2008,  76:  909 
  • 2 Wang W.-B. Lu S.-M. Yang P.-Y. Han X.-W. Zhou Y.-G. J. Am. Chem. Soc.  2003,  125:  10536 
  • For selected recent examples of asymmetric hydrogenation of quinolines, see:
  • 3a Lu S.-M. Han X.-W. Zhou Y.-G. Adv. Synth. Catal.  2004,  346:  909 
  • 3b Wang D.-W. Wang X.-B. Wang D.-S. Lu S.-M. Zhou Y.-G. Li Y.-X.
    J. Org. Chem.  2009,  74:  2780 
  • 3c Wang D.-S. Zhou Y.-G. Tetrahedron Lett.  2010,  51:  3014 
  • 3d Xu L.-J. Lam KH. Ji JX. Fan Q.-H. Lo W.-H. Chan ASC. Chem. Commun.  2005,  1390 
  • 3e Tang W.-J. Zhu S.-F. Xu L.-J. Zhou Q.-L. Fan Q.-H. Zhou H.-F. Lam K. Chan ASC. Chem. Commun.  2007,  613 
  • 3f Wang ZJ. Deng GJ. Li Y. He YM. Tang WJ. Fan QH. Org. Lett.  2007,  9:  1243 
  • 3g Reetz M. Li X. Chem. Commun.  2006,  2159 
  • 3h Mršić N. Lefort L. Boogers JAF. Minnaard AJ. Feringa BL. de Vries JG. Adv. Synth. Catal.  2008,  350:  1081 
  • 3i Tadaoka H. Cartigny D. Nagano T. Gosavi T. Ayad T. Genêt JP. Ohshima T. Ratovelomanana-Vidal V. Mashima K. Chem. Eur. J.  2009,  15:  9990 
  • 4a Zhou HF. Li ZW. Wang ZJ. Wang TL. Xu LJ. He YM. Fan Q.-H. Pan J. Gu LQ. Chan ASC. Angew. Chem. Int. Ed.  2008,  47:  8464 
  • 4b Wang Z.-J. Zhou H.-F. Wang T.-L. He Y.-M. Fan Q.-H. Green Chem.  2009,  11:  767 
  • 4c Li Z.-W. Wang T.-L. He Y.-M. Wang Z.-J. Fan Q.-H. Pan J. Xu L.-J. Org. Lett.  2008,  10:  5265 
  • For selected examples of asymmetric hydrogenation of other heteroaromatic compounds, see: For indoles and pyrroles:
  • 5a Kuwano R. Sato K. Kurokawa T. Karube D. Ito Y. J. Am. Chem. Soc.  2000,  122:  7614 
  • 5b Wang D.-S. Chen Q.-A. Li W. Yu C.-B. Zhou Y.-G. Zhang X. J. Am. Chem. Soc.  2010,  132:  8909 
  • 5c Kuwano R. Kashiwabara M. Ohsumi M. Kusano H. J. Am. Chem. Soc.  2008,  130:  808 
  • 5d For furans, see: Kaiser S. Smidt SP. Pfaltz A. Angew. Chem. Int. Ed.  2006,  45:  5194 
  • 5e For pyridines, see: Legault CY. Charette AB. J. Am. Chem. Soc.  2005,  127:  8966 
  • 5f For isoquinolines, see: Lu SM. Wang YQ. Han XW. Zhou Y.-G. Angew. Chem. Int. Ed.  2006,  45:  2260 
  • For quinoxalines, see:
  • 5g Tang W.-J. Xu L.-J. Fan Q.-H. Wang J. Fan B.-M. Lam K.-H. Chan ASC. Angew. Chem. Int. Ed.  2009,  48:  9135 
  • 5h Mršić N. Jerphagnon T. Minnaard AJ. Feringa BL. de Vries JG. Adv. Synth. Catal.  2009,  351:  2549 
  • 6 Carey ARE. Fukata G. O’Ferrall RAM. Murphy MG. J. Chem. Soc., Perkin Trans. 2  1985,  1711 
  • For metal complexes containing diamine ligands for asymmetric hydrogenation, see:
  • 7a Ito M. Hirakawa M. Murata K. Ikariya T. Organometallics  2001,  20:  379 
  • 7b Ohkuma T. Utsumi N. Tsutsumi K. Murata K. Sandoval CA. Noyori R. J. Am. Chem. Soc.  2006,  128:  8724 
  • 7c Ohkuma T. Tsutsumi K. Utsumi N. Arai N. Noyori R. Murata K. Org. Lett.  2007,  9:  255 
  • 7d Li C. Xiao J. J. Am. Chem. Soc.  2008,  130:  13208 
  • 7e Chen f. Wang T.-L. He Y.-M. Ding Z.-Y. Li Z.-W. Xu L.-J. Fan Q.-H. Chem. Eur. J.  2011,  17:  1109 
  • 8 Wang X.-B. Wang D.-W. Lu S.-M. Yu C.-B. Zhou Y.-G. Tetrahedron: Asymmetry  2009,  20:  1040 
  • 9a Noyori R. Hashiguchi S. Acc. Chem. Res.  1997,  30:  97 
  • 9b Hashiguchi S. Fujii A. Takehara J. Ikariya T. Noyori R. J. Am. Chem. Soc.  1995,  117:  7562 
  • 10 Sidler DR. Sager JW. Bergan JJ. Wells KM. Bhupathy M. Volante RP. Tetrahedron: Asymmetry  1997,  8:  161 
  • 11 For transition-metal-catalyzed asymmetric transfer hydrogenation of quinolines in acidic aqueous buffer solution, see: Wang C. Li C. Wu X. Pettman A. Xiao J. Angew. Chem. Int. Ed.  2009,  48:  6524 
12

Typical procedure for the Ru-catalyzed asymmetric ATH/AH reactions: Into a 50 mL glass-lined stainless steel reactor with a magnetic stirring bar was charged (R,R)-1b (0.6 mg, 0.001 mmol), substrate 2a (24.7 mg, 0.1 mmol) and degassed EtOH (1 mL) under a nitrogen atmosphere, and the mixture was stirred at r.t. for 24 h. Then, to the reaction mixture was added a solution of 1.0 M TfOH in EtOH (100 µL, 0.001 mmol, 1 mol% cf substrate) under a nitrogen atmosphere. The autoclave was closed, and H2 was initially introduced into the autoclave at a pressure of 50 atm, before being reduced to 1 atm. After this procedure was repeated three times, the autoclave was pressurized with H2 to 50 atm. Subsequently, the mixture was stirred under this H2 pressure at r.t. for another 12 h. After carefully releasing the hydrogen, the mixture was concentrated to afford the crude product. The conversion and diastereoselectivity were determined by ¹H NMR analysis of the crude product. Further purification was performed with a silica gel column (PE-CH2Cl2, 1:1) to give the pure product, (+)-1-phenyl-2-(1,2,3,4-tetrahydroquinolin-2-yl)ethanol (4a). Isolated yield: 94%; >95:5 dr; >99% ee; [α] d ²0 +67.9 (c 1.00, CHCl3); ¹H NMR (300 MHz, CDCl3): δ = 7.38-7.29 (m, 5 H), 7.00-6.95 (m, 2 H), 6.67-6.62 (m, 1 H), 6.49 (d, J = 7.8 Hz, 1 H), 5.02 (t, J = 6.6 Hz, 1 H), 3.55-3.47 (m, 1 H), 2.88-2.69 (m, 2 H), 1.97-1.90 (m, 3 H), 1.88-1.81 (m, 1 H); ¹³C NMR (75 MHz, CDCl3): δ = 143.34, 143.14, 128.30, 127.56, 126.61, 125.70, 124.69, 120.69, 116.73, 113.99, 71.07, 47.79, 43.67, 26.95, 25.15; HRMS (ESI): m/z [M + H]+ calcd for C17H20NO: 254.15394; found: 254.15385.