Abstract
CuBr-NCS was found to be a mild and efficient reaction system
to promote the multicomponent azide-alkyne cycloaddition reactions.
Under the reaction conditions, terminal alkynes and azides can react
smoothly at ambient temperature to give the target products 5-bromo-1,4-disubsituted-1,2,3-triazoles
in moderate to good yields with a wide tolerance of other sensitive
functional groups. The further successful application of the CuBr-NCS
reaction system in sugar and cyclic adenosine 5′-diphosphoribose (cADPR)
analogues illustrated the value of this method in the synthesis
of designed biomolecules.
Key words
multicomponent azide-alkyne cycloaddition - 5-bromo-1,4-disubstituted-1,2,3-triazole - click chemistry - copper catalysis
References and Notes
1
Tron GC.
Pirali T.
Billington RA.
Canonico PL.
Sorba G.
Genazzani AA.
Med. Res. Rev.
2008,
28:
178
2
Amblard F.
Hyun Cho JH.
Schinazi RF.
Chem. Rev.
2009,
109:
4207
3
Meldal M.
Tornøe CW.
Chem. Rev.
2008,
108:
2952
4
Kolb HC.
Sharpless KB.
Drug Discov. Today
2003,
8:
1128 ; and references therein
5
Thibault RJ.
Takizawa K.
Lowenheilm P.
Brett Helms B.
Justin L.
Mynar JL.
Jean MJ.
Fréchet JJ.
Hawker CJ.
J. Am. Chem. Soc.
2006,
128:
12084
6
Bock VD.
Hiemstra H.
Maarseveen JH.
Eur.
J. Org. Chem.
2006,
71:
51
7
Nahrwold M.
Bogner T.
Eissler S.
Verma S.
Sewald N.
Org.
Lett.
2010,
12:
1064
8
Somu RV.
Boshoff H.
Qiao C.
Bennett EM.
Barry CE.
Aldrich CC.
J. Med. Chem.
2006,
49:
31
9
Pagliai F.
Pirali T.
Del Grosso E.
Di Brisco R.
Tron
GC.
Sorba G.
Genazzani AA.
J. Med. Chem.
2006,
49:
467
10
Alam MS.
Kajiki R.
Hanatani H.
Kong X.
Ozoe F.
Matsui Y.
Matsumura F.
Ozoe Y.
J. Agric. Food Chem.
2006,
54:
1361
11
Li L.
Siebrands CC.
Yang Z.
Zhang L.
Guse AH.
Zhang L.
Org. Biomol. Chem.
2010,
1843
12
Li L.
Lin B.
Yang Z.
Zhang L.
Zhang L.
Tetrahedron Lett.
2008,
49:
4491
13
Spiteri C.
Moses JE.
Angew. Chem. Int. Ed.
2010,
49:
31
14
Hein JE.
Tripp JC.
Krasnova L.
Sharpless KB.
Fokin VV.
Angew. Chem.
2009,
121:
8162
15
Li L.
Zhang G.
Zhu A.
Zhang L.
J.
Org. Chem.
2008,
130:
3630
16
Wu YM.
Deng J.
Li Y.
Chen QY.
Synthesis
2005,
1314
17
Malnuit V.
Duca M.
Manout A.
Bougrin K.
Benhida R.
Synlett
2009,
2123
18
Zhang X.
Hsung RP.
Li H.
Chem.
Commun.
2007,
2420
19
Gerard B.
Ryan J.
Beeler AB.
Porco JA.
Tetrahedron
2006,
62:
6405
20
Gu XF.
Yang ZJ.
Zhang LR.
Kunerth S.
Fliegert R.
Weber K.
Guse AH.
Zhang LH.
J. Med. Chem.
2004,
47:
5674
21
Zhang B.
Wagner GK.
Weber K.
Garnham C.
Morgan AJ.
Galione A.
Guse AH.
Potter BVL.
J.
Med. Chem.
2008,
51:
1623
22
Huang J.
Macdonald SJF.
Harrity JPA.
Chem. Commun.
2009,
436
23
Kuijpers BHM.
Dijkmans GCT.
Groothuys S.
Quaedflieg PJLM.
Blaauw RH.
van Delft FL.
Rutjes FPJT.
Synlett
2005,
3059
24 NCS (0.072 mmol) and TBAB (0.072 mmol)
were dissolved in THF (1.5 mL), and a light yellow solution was
obtained immediately. The UV spectrum showed εmax = 382
nm, which agreed with the UV spectrum of active bromine reagent
BrCl.
25
Representative
Procedure
A mixture of 1 (0.048
mmol), 2 (0.072 mmol), CuBr (10 mg, 0.072
mmol), DIPEA (9 mg, 0.072 mmol), and NCS (9.5 mg, 0.072 mmol) in
THF (3 mL) was stirred at r.t. The reaction procedure was monitored
by TLC. When the reaction was completed, the mixture was evaporated,
and the residue was partitioned between EtOAc and H2 O.
The organic layer was washed with brine, dried over anhyd Na2 SO4 ,
and evaporated. The residue was purified by silica gel column chromatography
to give compound 3 .