References and Notes
1a
Horton DA.
Bourne GT.
Smythe ML.
Chem.
Rev.
2003,
103:
893
1b
Bringmann G.
Gunther C.
Ochse M.
Schupp O.
Tasler S.
Biaryls
in Nature: A Multi-Facetted Class of Stereochemically, Biosynthetically,
and Pharma-cologically Intriguing Secondary Metabolites, In Progress in
the Chemistry of Organic Natural Products
Vol. 82:
Herz W.
Falk H.
Kirby GW.
Moore RE.
Springer-Verlag;
New
York:
2001.
1c
Hajduk PJ.
Bures M.
Praestgaard J.
Fesik SW.
J.
Med. Chem.
2000,
43:
3443
1d
Bemis GW.
Murcko MA.
J.
Med. Chem.
1996,
39:
2887
2a
Schmidt U.
Leitenberger V.
Griesser H.
Schmidt J.
Meyer R.
Synthesis
1992,
1248
2b
Schmidt U.
Meyer R.
Leitenberger V.
Griesser H.
Lieberknecht A.
Synthesis
1992,
1025
3a
Markham A.
Goa KL.
Drugs
1997,
54:
299
3b
Croom KF.
Keating GM.
Am.
J. Cardiovasc. Drugs
2004,
4:
395
3c
Sharpe M.
Jarvis B.
Goa KL.
Drugs
2001,
61:
1501
3d
Yusuf S.
Am.
J. Cardiol.
2002,
89:
18A
4
Matheron ME.
Porchas M.
Plant Dis.
2004,
88:
665
5
Poetsch E.
Kontakte
1988,
2:
15
6a
Miyaura N.
Yamada K.
Suzuki A.
Tetrahedron Lett.
1979,
3437
6b
Stanforth SP.
Tetrahedron
1998,
54:
263
6c
Suzuki A.
Pure
Appl. Chem.
1991,
63:
419
6d
Wolfe JP.
Buchwald SP.
Angew.
Chem. Int. Ed.
1999,
38:
2413
6e
Zapf A.
Beller M.
Chem. Eur. J.
2000,
6:
1830
6f
Bedford RB.
Cazin CSJ.
Coles SJ.
Gelbrich T.
Horton PN.
Hursthouse MB.
Light ME.
Organometallics
2003,
22:
987
7a
Baba S.
Negishi E.
J.
Am. Chem. Soc.
1976,
98:
6729
7b
Dai C.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
2719
8a
Tamao K.
Sumitani K.
Kumada M.
J. Am. Chem. Soc.
1972,
94:
4374
8b
Herrmann WA.
Bohm VPW.
Reisinger C.
J. Organomet. Chem.
1999,
576:
23
9a
Hatanaka Y.
Hiyama T.
J.
Org. Chem.
1988,
53:
920
9b
Gouda K.
Hagiwara E.
Hatanaka Y.
Hiyama T.
J. Org. Chem.
1996,
61:
7232
9c
Mowery ME.
DeShong P.
Org. Lett.
1999,
1:
2137
9d
Lee J.
Fu GC.
J. Am. Chem. Soc.
2003,
125:
5616
9e
Riggleman S.
Deshong P.
J. Org. Chem.
2003,
68:
8106
9f
Lee HM.
Nolan SP.
Org. Lett.
2000,
2:
2053
10a
Stille JK.
Pure Appl. Chem.
1985,
57:
1771
10b
Stille JK.
Angew. Chem., Int. Ed. Engl.
1986,
25:
508
10c
Farina V.
Krishnamurthy V.
Scott WJ.
Org.
React. (N.Y.)
1997,
50:
1
10d
Hassa J.
Svignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem.
Rev.
2002,
102:
1359
10e
Littke AF.
Fu GC.
Angew.
Chem. Int. Ed.
2002,
41:
4176
11a
Hagiwara E.
Gouda K.
Hatanaka Y.
Hiyama T.
Tetrahedron
Lett.
1997,
38:
439
11b
Murata M.
Shimazaki R.
Watanabe S.
Masuda Y.
Synthesis
2001,
2231
12a
Wolf C.
Lerebours R.
Org.
Lett.
2004,
6:
1147
12b
Gordillo A.
Jesus E.
Lopez-Mardomingo C.
Org.
Lett.
2006,
8:
3517
13a
Shi S.
Zhang Y.
J.
Org. Chem.
2007,
72:
5927
13b
Ranu BC.
Dey R.
Chattopadhyay K.
Tetrahedron Lett.
2008,
49:
3430
13c
Huang T.
Li CJ.
Tetrahedron Lett.
2002,
43:
403
13d
Srimani D.
Sawoo S.
Sarkar A.
Org.
Lett.
2007,
9:
3639
13e
Alacid E.
Najera C.
Adv. Synth. Catal.
2006,
348:
945
13f
Alacid E.
Najera C.
Adv. Synth. Catal.
2006,
348:
2085
14a
Yavuz CT.
Mayo JT.
Yu WW.
Prakash A.
Falkner JC.
Yean S.
Cong LL.
Shipley HJ.
Kan A.
Tomson M.
Natelson D.
Colvin VL.
Science
2006,
314:
964
14b
Sun SH.
Murray CB.
Weller D.
Folks L.
Moser A.
Science
2000,
287:
1989
14c
Gao J.
Zhang W.
Huang P.
Zhang B.
Zhang X.
Xu B.
J.
Am. Chem. Soc.
2008,
130:
3710
14d
Lu J.
Yang SH.
Ng KM.
Su
CH.
Yeh CS.
Wu YN.
Shieh DB.
Nanotechnology
2006,
17:
5812
14e
Li Z.
Wei L.
Gao M.
Lei H.
Adv. Mater. (Weinheim, Ger.)
2005,
17:
1001
14f
Yu MK.
Jeong YY.
Park J.
Park S.
Kim JW.
Min JJ.
Kim K.
Jon S.
Angew. Chem. Int. Ed.
2008,
47:
5362
15a
Roca AG.
Morales MP.
O’Grady K.
Serna CJ.
Nanotechnology
2006,
17:
783
15b
Zheng YH.
Cheng Y.
Bao F.
Wang YS.
Mater. Res. Bull.
2006,
41:
525
15c
Lang C.
Schueler D.
Faivre D.
Macromol.
Biosci.
2007,
7:
144
15d
Majewski P.
Thierry B.
Crit. Rev. Solid State Mater.
Sci.
2007,
32:
203
16
Sreedhar B.
Kumar AS.
Reddy PS.
Tetrahedron
Lett.
2010,
51:
1891
17
Liu J.
Peng X.
Sun W.
Zhao Y.
Xia C.
Org. Lett.
2008,
10:
3933
18
Metal Catalyzed Cross-Coupling
Reactions
Diederich F.
de Mejiere A.
John Wiley & Sons;
New
York:
2004.
19
Synthesis of the
Fe
3
O
4
nanoparticles:
FeSO4˙7H2O (13.9 g) and Fe2
(SO4)3 (20
g) were dissolved in H2O (500 mL) in a 1000 mL beaker.
NH4OH (aq, 25%) was added slowly to adjust the
pH of the solution to 10. The reaction mixture was then continually
stirred for 1 h at 60 ˚C. The precipitated nanoparticles
were separated magnetically, washed with water until the pH 7,
and then dried under vacuum at 60 ˚C for 2 h.
This magnetic nano ferrite (Fe3O4) was then
used for the preparation of Pd/Fe3O4.
Synthesis of the Pd/Fe
3
O
4
catalyst:
Fe3O4 nanoparticles were impregnated with
Na2PdCl4 (1.0%) aqueous solution and
stirred for 1 h. After impregnation, the suspension was adjusted
to pH 12 by adding NaOH (1 M) and stirred for 6 h. The
solid was washed with distilled H2O. The catalyst precursors
were reduced by adding 0.2 M NaBH4 solution dropwise
under gentle stirring in an ice-water bath for 30 min
until no obvious bubbles were observed in the solution. The resulting
Pd/Fe3O4 was washed thoroughly with
distilled H2O and subsequently with EtOH. The palladium
content in the catalyst was measured as 0.023 mmol˙g-¹ using
ICP-AES.
General procedure for the
Hiyama reaction: A mixture
of aryl bromide (1 mmol),
aryl siloxane (1.2 mmol), NaOH (3 mmol), Pd/Fe3O4 catalyst
(50 mg, 0.2 mol% of Pd) and distilled H2O (3
mL) was taken in a round-bottomed flask and stirred at 90 ˚C
for 6 h. After completion of the reaction (monitored by
TLC) the catalyst was easily separated from the reaction mixture
with an external magnet. After removing the solvent, the crude material
was purified by chromatography on silica gel to afford the pure
product. The spectroscopic data of all known compounds were identical
to those reported in the literature.
2′-Methoxy-4-methylbiphenyl (Table
[²]
, entry 8): ¹H
NMR (300 MHz, CDCl3): δ = 2.35 (s,
3 H), 3.78 (s, 3 H), 6.88-6.99 (m, 2 H),
7.22-7.28 (m, 2 H), 7.15 (d, J = 8.0
Hz, 2 H), 7.35 (d, J = 8.0 Hz,
2 H). ¹³C NMR (75 MHz, CDCl3): δ = 21.1,
55.4, 111.1, 120.7, 128.3, 128.6, 129.3, 130.7, 131.4, 131.5, 136.4,
156.4. MS (EI): m/z = 198 [M]+.
4′-Methoxy-2,4,6-trimethylbiphenyl (Table
[²]
, entry 16): ¹H
NMR (300 MHz, CDCl3): δ = 2.03 (s,
6 H), 2.35 (s, 3 H), 3.86 (s, 3 H), 6.95
(s, 2 H), 7.07 (d, J = 8.6 Hz,
2 H), 7.49 (d, J = 8.6 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.7, 20.9, 55.2,
113.7, 127.9, 130.3, 133.2, 136.4, 138.6, 158.1. MS (EI): m/z = 226 [M]+.
4′-tert-Butyl-2,4,6-trimethylbiphenyl (Table
[²]
, entry 17): ¹H
NMR (300 MHz, CDCl3): δ = 1.39 (s,
9 H), 1.98 (s, 6 H), 2.30 (s, 3 H), 6.85
(s, 2 H), 7.01 (d, J = 8.3 Hz,
2 H), 7.41 (d, J = 8.3 Hz, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 20.8, 27.0, 31.3,
34.4, 125.6, 126.6, 127.9, 128.8, 136.2, 138.2, 149.8. MS (EI):
m/z = 252 [M]+.
1-p-Tolylnaphthalene (Table
[²]
, entry 18): ¹H
NMR (300 MHz, CDCl3): δ = 2.45 (s,
3 H), 7.25 (d, J = 8.3 Hz, 2 H), 7.33-7.38
(m, 3 H), 7.39-7.49 (m, 3 H), 7.77-7.92
(m, 3 H). ¹³C NMR (75 MHz,
CDCl3): δ = 21.2, 125.3, 125.6, 125.8, 126.0,
126.8, 127.4, 128.2, 128.9, 129.9, 131.6, 133.7, 136.8, 137.7, 140.2.
MS (ESI): m/z = 218 [M]+.