Subscribe to RSS
DOI: 10.1055/s-0030-1259932
Catalytic Enantioselective Friedel-Crafts Alkylation of Indoles with β,γ-Unsaturated α-Keto Phosphonates in the Presence of Chiral Palladium Complexes
Publication History
Publication Date:
30 March 2011 (online)
Abstract
The catalytic enantioselective Friedel-Crafts alkylation reaction promoted by chiral palladium complexes is described. The treatment of indoles with β,γ-unsaturated α-keto phosphonates under the mild reaction conditions afforded the corresponding Friedel-Crafts alkylation adducts with excellent enantioselectivities (up to 99% ee).
Key words
Friedel-Crafts reaction - asymmetric catalysis - chiral palladium catalysts - indoles - β,γ-unsaturated α-keto phosphonates
- For reviews on Friedel-Crafts Alkylation, see:
-
1a
Jørgensen KA. Synthesis 2003, 1117 -
1b
Bandini M.Melloni A.Umani-Ronchi A. Angew. Chem. Int. Ed. 2004, 43: 550 -
1c
Bandini M.Melloni A.Tommasi S.Umani-Ronchi A. Synlett 2005, 1199 -
1d
Poulsen TB.Jørgensen KA. Chem. Rev. 2008, 108: 2903 -
1e
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 -
1f
You S.-L.Cai Q.Zeng M. Chem. Soc. Rev. 2009, 38: 210 -
1g
Bandini M.Umani-Ronchi A. Catalytic Asymmetric Friedel-Crafts Alkylations Wiley-VCH; Weinheim: 2009. -
1h
Zeng M.You S.-L. Synlett 2010, 1289 -
1i
Terrasson V.de Figueiredo RM.Campagne JM. Eur. J. Org. Chem. 2010, 2635 -
2a
Sundberg RJ. Indoles Academic Press; San Diego: 1996. -
2b
Toyota M.Ihara M. Nat. Prod. Rep. 1998, 15: 327 -
2c
Huber U.Moore RE.Patterson GML. J. Nat. Prod. 1998, 61: 1304 -
2d
Kinsman AC.Kerr MA.
J. Am. Chem. Soc. 2003, 125: 14120 -
2e
Mancini I.Guella G.Zibrowius H.Pietra F. Tetrahedron 2003, 59: 8757 -
2f
Kam T.-S.Choo Y.-M. J. Nat. Prod. 2004, 67: 547 -
3a
Somei M.Yamada F. Nat. Prod. Rep. 2005, 22: 73 -
3b
Reddy R.Jaquith JB.Neelagiri VR.Saleh-Hanna S.Durst T. Org. Lett. 2002, 4: 695 -
3c
King HD.Meng Z.Denhart D.Mattson R.Kimura R.Wu D.Gao Q.Macor JE. Org. Lett. 2005, 7: 3437 -
3d
Baran PS.Richter JM. J. Am. Chem. Soc. 2004, 126: 7450 -
4a
Lv J.Li X.Zhong L.Luo S.Cheng J.-P. Org. Lett. 2010, 12: 1096 -
4b
Liu Y.Shang D.Zhou X.Zhu Y.Lin L.Liu X.Feng X. Org. Lett. 2010, 12: 180 -
4c
Singh PK.Singh VK. Org. Lett. 2008, 10: 4121 -
4d
Yang H.Hong Y.-T.Kim S. Org. Lett. 2007, 9: 2281 -
4e
Blay G.Fernandez I.Pedro JR.Vila C. Org. Lett. 2007, 9: 2601 -
4f
Evans DA.Fandrick KR.Song H.-J. J. Am. Chem. Soc. 2005, 127: 8942 -
4g
Yamazaki S.Iwata Y. J. Org. Chem. 2006, 71: 739 -
4h
Palomo C.Oiarbide M.Kardak BG.Garcia JM.Linden A. J. Am. Chem. Soc. 2005, 127: 4154 -
4i
Bandini M.Fagioli M.Melchiorre P.Melloni A.Umani-Ronchi A. Tetrahedron Lett. 2003, 44: 5843 -
4j
Bandini M.Melloni A.Tommasi S.Umani-Ronchi A. Helv. Chim. Acta 2003, 86: 3753 -
5a
Evans DA.Scheidt KA.Fandrick KR.Lam HW.Wu J. J. Am. Chem. Soc. 2003, 125: 10780 -
5b
Evans DA.Fandrick KR.Song H.-J.Scheidt KA.Xu R. J. Am. Chem. Soc. 2007, 129: 10029 - 6
Takenaka N.Abell JP.Yamamoto H. J. Am. Chem. Soc. 2007, 129: 742 -
7a
Shi Z.-H.Sheng H.Yang K.-F.Jiang J.-X.Lai G.-Q.Lu Y.Xu L.-W. Eur. J. Org. Chem. 2011, 66 -
7b
Jiang H.Paixoã MW.Monge D.Jørgensen KA.
J. Am. Chem. Soc. 2010, 132: 2775 -
7c
Bachu P.Akiyama T. Chem. Commun. 2010, 46: 4112 -
7d
Cai C.Zhao Z.-A.You S.-L. Angew. Chem. Int. Ed. 2009, 48: 7428 -
7e
Sheng Y.-F.Gu Q.Zhang A.-J.You S.-L. J. Org. Chem. 2009, 74: 6899 -
7f
Tang H.-Y.Lu A.-D.Zhou Z.-H.Zhao G.-F.He L.-N.Tang C.-C. Eur. J. Org. Chem. 2008, 1406 -
7g
Bartoli G.Melchiorre P. Synlett 2008, 1759 -
7h
Rueping M.Nachtsheim BJ.Moreth SA.Bolte M. Angew. Chem. Int. Ed. 2008, 47: 593 -
7i
Nakamura S.Hyodo K.Nakamura Y.Shibata N.Toru T. Adv. Synth. Catal. 2008, 350: 1443 -
7j
Li C.-F.Liu H.Liao J.Cao Y.-J.Liu X.-P.Xiao W.-J. Org. Lett. 2007, 9: 1847 -
7k
Chen W.Du W.Yue L.Li R.Wu Y.Ding L.-S.Chen Y.-C. Org. Biomol. Chem. 2007, 5: 816 -
7l
Bartoli G.Bosco M.Carlone A.Pesciaioli F.Sambri L.Melchiorre P. Org. Lett. 2007, 9: 1403 -
7m
Li H.Wang Y.-Q.Deng L. Org. Lett. 2006, 8: 4063 -
7n
Török B.Abid M.London G.Esquibel J.Török M.Mhadgut SC.Yan P.Prakash GKS. Angew.Chem. Int. Ed. 2005, 44: 3086 -
7o
Austin JF.MacMillan DWC. J. Am. Chem. Soc. 2002, 124: 1172 - For recent selected examples of the enantioselective reactions catalyzed by chiral palladium complexes, see:
-
8a
Lectard S.Hamashima Y.Sodeoka M. Adv. Synth. Catal. 2010, 352: 2708 -
8b
Sodeoka M.Hamashima Y. Chem. Commun. 2009, 5787 -
8c
Hamashima Y.Sasamoto N.Umebayashi N.Sodeoka M. Chem. Asian J. 2008, 3: 1443 -
8d
Hamashima Y.Sasamoto N.Hotta D.Somei H.Umebayashi N.Sodeoka M. Angew. Chem. Int. Ed. 2005, 44: 1525 -
8e
Smith AMR.Rzepa HS.White AJP.Billen D.Hii KK. J. Org. Chem. 2010, 75: 3085 -
8f
Smith AMR.Billen D.Hii KK. Chem. Commun. 2009, 3925 -
8g
Phua PH.Mathew SP.White AJP.de Vries JG.Blackmond DG.Hii KK. Chem. Eur. J. 2007, 13: 4602 -
9a
Yoon SJ.Kang YK.Kim DY. Synlett 2011, 420 -
9b
Moon HW.Kim DY. Bull. Korean Chem. Soc. 2011, 32: 291 -
9c
Kang YK.Kim SM.Kim DY. J. Am. Chem. Soc. 2010, 132: 11847 -
9d
Kang SH.Kim DY. Adv. Synth. Catal. 2010, 352: 2783 -
9e
Lee JH.Kim DY. Synthesis 2010, 1860 -
9f
Moon HW.Kim DY. Tetrahedron Lett. 2010, 51: 2906 -
9g
Lee JH.Kim DY. Adv. Synth Catal. 2009, 351: 1779 -
9h
Kang YK.Kim DY. J. Org. Chem. 2009, 74: 5734 -
9i
Moon HW.Cho MJ.Kim DY. Tetrahedron Lett. 2009, 50: 4896 -
9j
Kwon BK.Kim SM.Kim DY. J. Fluorine Chem. 2009, 130: 259 -
9k
Oh Y.Kim SM.Kim DY. Tetrahedron Lett. 2009, 50: 4674 -
9l
Kang SH.Kim DY. Bull. Korean Chem. Soc. 2009, 30: 1439 -
9m
Kwon BK.Kim DY. Bull. Korean Chem. Soc. 2009, 30: 1441 -
9n
Mang JY.Kwon DG.Kim DY. Bull. Korean Chem. Soc. 2009, 30: 249 -
9o
Kim SM.Lee JH.Kim DY. Synlett 2008, 2659 -
9p
Jung SH.Kim DY. Tetrahedron Lett. 2008, 49: 5527 -
9q
Park EJ.Kim MH.Kim DY. J. Org. Chem. 2004, 69: 6897 -
9r
Kim DY.Choi YJ.Park HY.Joung CU.Koh KO.Mang JY.Jung K.-Y. Synth. Commun. 2003, 33: 435 -
9s
Kim DY.Park EJ. Org. Lett. 2002, 4: 545 -
9t
Kim DY.Huh SC.Kim SM. Tetrahedron Lett. 2001, 42: 6299 -
9u
Kim DY.Huh SC. Tetrahedron 2001, 57: 8933 -
10a
Kang SH.Kang YK.Kim DY. Tetrahedron 2009, 65: 5676 -
10b
Kim EJ.Kang YK.Kim DY. Bull. Korean Chem. Soc. 2009, 30: 1437 -
10c
Lee NR.Kim SM.Kim DY. Bull. Korean Chem. Soc. 2009, 30: 829 -
10d
Kang YK.Kim DY. Bull. Korean Chem. Soc. 2008, 29: 2093 -
10e
Lee JH.Bang HT.Kim DY. Synlett 2008, 1821 -
10f
Kang YK.Cho MJ.Kim SM.Kim DY. Synlett 2007, 1135 -
10g
Cho MJ.Kang YK.Lee NR.Kim DY. Bull. Korean Chem. Soc. 2007, 28: 2191 -
10h
Kim SM.Kang YK.Cho MJ.Kim DY. Bull. Korean Chem. Soc. 2007, 28: 2435 -
10i
Cho MJ.Kang YK.Lee NR.Kim DY. Bull. Korean Chem. Soc. 2007, 28: 2191 -
10j
Kim SM.Kang YK.Lee K.Mang JY.Kim DY. Bull. Korean Chem. Soc. 2006, 27: 423 -
10k
Kang YK.Kim DY. Tetrahedron Lett. 2006, 47: 4265 -
10l
Kim HR.Kim DY. Tetrahedron Lett. 2005, 46: 3115 -
10m
Kim SM.Kim HR.Kim DY. Org. Lett. 2005, 7: 2309
References and Notes
Typical Procedure
To
a stirred solution of (E)-diethyl 1-oxobut-2-enylphos-phonate
(2a, 20.6 mg, 0.1 mmol), Pd catalyst 1c (5.4 mg, 0.005 mmol) in CH2Cl2 (1
mL) was added indole (3a, 14.0 mg, 0.12
mmol) at r.t. The reaction mixture was stirred for 2 h at r.t. Then
MeOH (0.15 mL), followed by DBU (0.03 mL), was added directly to
the reaction mixture. The reaction was allowed to stir for 2 h at
r.t. The reaction was diluted with EtOAc (10 mL), then washed with
sat. NH4Cl. The organic layer was dried over anhyd MgSO4,
filtered, concentrated, and purified by flash column chromatography (EtOAc-hexane,
1:5) to afford (S)-methyl 3-(1H-indol-3-yl)butanoate (4a,
70%, 15.2 mg). [α]D
²8 7.3
(c 0.7, CHCl3, 93% ee). ¹H
NMR (200 MHz, CDCl3): δ = 7.99
(br s, 1 H), 7.63 (d, J = 7.8
Hz, 1 H), 7.28 (d, J = 7.6
Hz, 1 H), 7.23-7.05 (m, 2 H), 6.90 (d, J = 2.5
Hz, 1 H), 3.65-3.47 (m, 1 H), 3.62 (s, 3 H), 2.82 (dd, J = 14.8,
6.0 Hz, 1 H), 2.56 (dd, J = 14.7, 8.7
Hz, 1 H), 1.39 (d, J = 6.9
Hz, 3 H). ¹³C NMR (50 MHz, CDCl3): δ = 173.0,
136.1, 125.9, 121.5, 120.2, 119.7, 118.8, 118.7, 110.9, 51.1, 41.9,
27.6, 20.6. ESI-MS: m/z = 217.9 [M + H]+,
117.0, 120.9, 123.0 147.0, 176.9. HPLC (hexane-i-PrOH = 90:10, 220 nm, 0.8
mL/min) Chiralcel OD-H column, t
R = 9.0
min(minor), t
R = 13.8
(major).
The two-site-binding interaction between substrate and palladium catalyst is crucial to guarantee reactivity as well as stereocontrol. In fact, when the monodentate ethyl (E)-but-2-enoate was reacted with indole under the same reaction conditions, no reaction occurred.