Subscribe to RSS
DOI: 10.1055/s-0030-1259959
Microwave-Promoted TBAF-Catalyzed SNAr Reaction of Aryl Fluorides and ArSTMS: An Efficient Synthesis of Unsymmetrical Diaryl Thioethers
Publication History
Publication Date:
18 April 2011 (online)
Abstract
Microwave irradiation was found to promote tetrabutylammonium fluoride catalyzed nucleophilic aromatic substitution of aryl fluorides and arylthiotrimethylsilanes, affording high yields of unsymmetrical diaryl thioethers efficiently under mild, transition-metal- and base-free conditions. Microwave showed unusual improvement on the reaction in not only the conditions and reaction rate, but also in selectivity and substrate scope.
Key words
microwave irradiation - tetrabutylammonium fluoride - aryl halides - arylthiotrimethylsilane - nucleophilic aromatic substitution
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Hartwig JF. Acc. Chem. Res. 2008, 41: 1534 -
1b
Surry DS.Buchwald SL. Angew. Chem., Int. Ed. 2008, 47: 6338 -
1c
Kondo T.Mitsudo T.-A. Chem. Rev. 2000, 100: 3205 -
1d
Evano G.Blanchard N.Toumi M. Chem. Rev. 2008, 108: 3054 -
1e
Prim D.Campagne J.Joseph D.Andrioletti B. Tetrahedron 2002, 58: 2041 -
1f
Van de Jeught S.Stevens CV. Chem. Rev. 2009, 109: 2672 -
1g
Beletskaya IP.Cheprakov AV. Coord. Chem. Rev. 2004, 248: 2337 -
1h
Xu Q.Han L.-B. J. Organomet. Chem. 2011, 696: 130 -
2a
Negwar M. In Organic-Chemical Drugs and Their Synonyms (An International Survey) 7th ed.: Akademie; Berlin: 1994. -
2b
Evano G.Blanchard N.Toumi M. Chem. Rev. 2008, 108: 3054 -
2c
Corbet J.-P.Mignani G. Chem. Rev. 2006, 106: 2651 -
2d
Blaser H.-U.Indolese A.Naud F.Nettekoven U.Schnyder A. Adv. Synth. Catal. 2004, 346: 1583 -
3a
Liu L.Stelmach JE.Natarajan SR.Chen M.-H.Singh SB.Schwartz CD.Fitzgerald CE.O’Keefe SJ.Zaller DM.Schmatz DM.Doherty JB. Bioorg. Med. Chem. Lett. 2003, 13: 3979 -
3b
Kaldor SW.Kalish VJ.Davies JFII.Shetty BV.Fritz JE.Appelt K.Burgess JA.Campanale KM.Chirgadze NY.Clawson DK.Dressman BA.Hatch SD.Khalil DA.Kosa MB.Lubbehusen PP.Muesing MA.Patick AK.Reich SH.Su KS.Tatlock JH. J. Med. Chem. 1997, 40: 3979 -
3c
Liu G.Huth JR.Olejniczak ET.Mendoza R.DeVries P.Leitza S.Reilly EB.Okasinski GF.Fesik SW.von Geldern TW. J. Med. Chem. 2001, 44: 1202 -
4a
Sciabola S.Carosati E.Baroni M.Mannhol R. J. Med. Chem. 2005, 48: 3756 -
4b
Llauger L.He H.Kim J.Aguirre J.Rosen N.Peters U.Davies P.Chiosis G. J. Med. Chem. 2005, 48: 2892 -
4c
Otzen T.Wempe EG.Kunz B.Bartels R.Lehwark-Yvetot G.Hänsel W.Schaper K.-J.Seydel JK. J. Med. Chem. 2004, 47: 240 -
4d
Sun Z.-Y.Botros E.Su A.-D.Kim Y.Wang E.Baturay NZ.Kwon C.-H. J. Med. Chem. 2000, 43: 4160 - 5
McGarrigle EM.Myers EL.Illa O.Shaw MA.Riches SL.Aggarwal VK. Chem. Rev. 2007, 107: 5481 -
6a
Mellah M.Voituriez A.Schulz E. Chem. Rev. 2007, 107: 5133 -
6b
Murray SG.Hartley FR. Chem. Rev. 1981, 81: 365 -
7a
Marcincal-Letebvre A.Gesquiere C.Lemer C.Dupuis B. J. Med. Chem. 1981, 24: 889 -
7b
Liu G.Link JT.Pei Z.Reilly EB.Leitza S.Nguyen B.Marsh KC.Okasinski GF.von Geldem TW.Ormes M.Fowler K.Gallatin M. J. Med. Chem. 2000, 43: 4025 -
7c
Gangjee A.Zeng Y.Talreja T.McGuire JJ.Kisliuk RL.Queener SF. J. Med. Chem. 2007, 50: 3046 -
7d
Jarkas N.McConathy J.Voll RJ.Goodman MM. J. Med. Chem. 2005, 48: 4254 -
8a
Ullmann F. Chem. Ber. 1904, 37: 853 -
8b
Moroz AA.Shvartsberg MS. Russ. Chem. Rev. 1974, 43: 679 -
8c
Lindley J. Tetrahedron 1984, 40: 1433 -
8d
Thomas AW.Ley SV. Angew. Chem. Int. Ed. 2003, 42: 5400 -
8e
Hassan J.Sevignon M.Gozzi C.Schulz C.Lemaire M. Chem. Rev. 2002, 102: 1359 -
8f
Evano G.Blanchard N.Toumi M. Chem. Rev. 2008, 108: 3054 -
8g
Sawyer JS. Tetrahedron 2000, 56: 5045 -
8h
Frlan R.Kikelj D. Synthesis 2006, 2271 -
9a
Bunnett JF.Zahler RE. Chem. Rev. 1951, 49: 273 -
9b
Sawyer JS. Tetrahedron 2000, 56: 5045 -
9c
Sawyer JS.Schmittling EA.Palkowitz JA.Smith WJ. J. Org. Chem. 1998, 63: 6338 -
9d
Duan Z.Ranjit S.Liu X. Org. Lett. 2010, 12: 2430 -
9e
Cevera M.Marquet J.Martin X. Tetrahedron 1996, 52: 2557 -
9f
Delfín DA.Morgan RE.Zhu X.Werbovetz KA. Bioorg. Med. Chem. 2009, 17: 820 -
10a
Duan Z.Ranjit S.Zhang P.Liu X. Chem. Eur. J. 2009, 15: 3666 -
10b
Ranjit S.Duan Z.Zhang P.Liu X. Org. Lett. 2010, 12: 4134 -
11a
Lee J.Fuchter MJ.Williamson RM.Leeke GA.Bush EJ.McConvey IF.Saubern S.Ryanc JH.Holmes AB. Chem. Commun. 2008, 4780 -
11b
Saunders DG. Synthesis 1988, 377 -
11c
Urgaonkar S.Verkade JG. Org. Lett. 2005, 7: 3319 -
11d
Oriyama T.Noda K.Yatabe K. Synlett 1997, 701 -
11e
Ueno M.Hori C.Suzawa K.Ebisawa M.Kondo Y. Eur. J. Org. Chem. 2005, 1965 -
11f
Samarakoon TB.Hur MY.Kurtz RD.Hanson PR. Org. Lett. 2010, 12: 2182 -
12a
Brook MA. Silicon in Organic, Organometallic, and Polymer Chemistry John Wiley & Sons; New York: 2000. -
12b
Colvin E. Silicon in Organic Synthesis Butterworth; London: 1981. -
12c
Weber WP. Silicon Reagents for Organic Synthesis Springer-Verlag; Berlin: 1983. -
12d
Green TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: Wiley; New York: 1999. -
13a
Gawronski J.Wascinska N.Gajewy J. Chem. Rev. 2008, 108: 5227 ; and references cited therein -
13b
Furin GG.Vyazankina OA.Gostevsky BA.Vyazankin NS. Tetrahedron 1988, 44: 2675 ; and references cited therein - 14
Fernandez-Rodriguez MA.Hartwig JF. Chem. Eur. J. 2010, 16: 2355 - 15
Evans DA.Truesdale LK.Grimm KG.Nesbitt SL. J. Am. Chem. Soc. 1977, 99: 5009 - 16
Sala GD.Lattanzi A. Org. Lett. 2009, 11: 3330 -
17a
Capperucci A.Tiberi C.Pollicino S.Innocenti AD. Tetrahedron Lett. 2009, 50: 2808 -
17b
Degl’Innocenti A.Capperucci A.Cerreti A.Pollicino S.Scapecchi S.Malesci I.Castagnoli G. Synlett 2005, 3063 -
17c
Tanabe Y.Mori K.Yoshida Y. J. Chem. Soc., Perkin Trans. 1 1997, 671 -
18a
Xu Q.Huang X.Yuan J. J. Org. Chem. 2005, 70: 6948 -
18b
Huang X.Liang CG.Xu Q.He QW. J. Org. Chem. 2001, 66: 74 -
19a
Dallinger D.Kappe CO. Chem. Rev. 2007, 107: 2563 -
19b
Yu X.Huang X. Synlett 2002, 1895 -
19c
Xu Q.Han L.-B. Org. Lett. 2006, 8: 2099 -
19d
Ren A.Yang X.Hong J.Yu X. Synlett 2008, 2376 -
20a
Typical Procedure for Microwave-Promoted TBAF-Catalyzed S N Ar Reaction of ArSTMS and Aryl Fluorides: The mixture of phenylthiotrimethylsilane (1a; 0.218 g, 1.2 mmol, 1.2 equiv), p-nitrophenyl fluoride (2a; 0.141 g, 1.0 mmol), and TBAF (2.61 mg, 1 mol%) in MeCN (2 mL) was placed in a microwave oven flask under air and then stirred at r.t. (ca. 25 ˚C) under microwave irradiation (600 w) for 5 h and the reaction was monitored by TLC and/or GC-MS. The solvent was then evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 97% yield of 3aa. An XH-100A microwave synthesis/extraction instrument, made by Beijing Xiang Hu Science and Technology Development Co. Ltd., was employed in above microwave irradiation reactions.
(4-Nitrophenyl)phenylthioether (3aa): ¹H NMR (300 MHz, CDCl3): δ = 8.05 (d, J = 7.0 Hz, 2 H), 7.53-7.56 (m, 2 H), 7.45-7.48 (m, 3 H), 7.17 (d, J = 7.0 Hz, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 148.5, 145.4, 134.7, 130.4, 130.0, 129.7, 126.7, 124.0. -
20b This compound is known,
see:
Lee JY.Lee PH. J. Org. Chem. 2008, 73: 7413 - 21
Amii H.Uneyama K. Chem. Rev. 2009, 109: 2119 ; and references cited therein -
22a
Kim YM.Yu S. J. Am. Chem. Soc. 2003, 125: 1696 -
22b
Wendt MD.Kunzer AR. Tetrahedron Lett. 2010, 51: 3041 -
22c
Li F.Wang Q.Ding Z.Tao F. Org. Lett. 2003, 5: 2169 - 23
Beck JR. Tetrahedron 1978, 34: 2057 - 25 After submission of this work, we
noticed that Thiel and co-workers reported a similar fluoride ion
catalyzed amination of substituted fluoroarenes using trimethylsilylimidazole
as the nitrogen source:
Dehe D.Munstein I.Reis A.Thiel WR. J. Org. Chem. 2011, 76: 1151
References and Notes
It was observed other TBAX salts (X = Cl, Br, I) did not show any catalytic activity at all in the present reactions.