Synlett 2011(8): 1143-1148  
DOI: 10.1055/s-0030-1259959
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Microwave-Promoted TBAF-Catalyzed SNAr Reaction of Aryl Fluorides and ArSTMS: An Efficient Synthesis of Unsymmetrical Diaryl Thioethers

Chuanzhi Liu, Xufeng Zang, Baohua Yu, Xiaochun Yu*, Qing Xu*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
Fax: +86(577)88373111; e-Mail: qing-xu@wzu.edu.cn; e-Mail: xiaochunyu@wzu.edu.cn;
Further Information

Publication History

Received 29 January 2011
Publication Date:
18 April 2011 (online)

Abstract

Microwave irradiation was found to promote tetrabutyl­ammonium fluoride catalyzed nucleophilic aromatic substitution of aryl fluorides and arylthiotrimethylsilanes, affording high yields of unsymmetrical diaryl thioethers efficiently under mild, transition-metal- and base-free conditions. Microwave showed unusual improvement on the reaction in not only the conditions and reaction rate, but also in selectivity and substrate scope.

    References and Notes

  • 1a Hartwig JF. Acc. Chem. Res.  2008,  41:  1534 
  • 1b Surry DS. Buchwald SL. Angew. Chem., Int. Ed.  2008,  47:  6338 
  • 1c Kondo T. Mitsudo T.-A. Chem. Rev.  2000,  100:  3205 
  • 1d Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 1e Prim D. Campagne J. Joseph D. Andrioletti B. Tetrahedron  2002,  58:  2041 
  • 1f Van de Jeught S. Stevens CV. Chem. Rev.  2009,  109:  2672 
  • 1g Beletskaya IP. Cheprakov AV. Coord. Chem. Rev.  2004,  248:  2337 
  • 1h Xu Q. Han L.-B. J. Organomet. Chem.  2011,  696:  130 
  • 2a Negwar M. In Organic-Chemical Drugs and Their Synonyms (An International Survey)   7th ed.:  Akademie; Berlin: 1994. 
  • 2b Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 2c Corbet J.-P. Mignani G. Chem. Rev.  2006,  106:  2651 
  • 2d Blaser H.-U. Indolese A. Naud F. Nettekoven U. Schnyder A. Adv. Synth. Catal.  2004,  346:  1583 
  • 3a Liu L. Stelmach JE. Natarajan SR. Chen M.-H. Singh SB. Schwartz CD. Fitzgerald CE. O’Keefe SJ. Zaller DM. Schmatz DM. Doherty JB. Bioorg. Med. Chem. Lett.  2003,  13:  3979 
  • 3b Kaldor SW. Kalish VJ. Davies JFII. Shetty BV. Fritz JE. Appelt K. Burgess JA. Campanale KM. Chirgadze NY. Clawson DK. Dressman BA. Hatch SD. Khalil DA. Kosa MB. Lubbehusen PP. Muesing MA. Patick AK. Reich SH. Su KS. Tatlock JH. J. Med. Chem.  1997,  40:  3979 
  • 3c Liu G. Huth JR. Olejniczak ET. Mendoza R. DeVries P. Leitza S. Reilly EB. Okasinski GF. Fesik SW. von Geldern TW. J. Med. Chem.  2001,  44:  1202 
  • 4a Sciabola S. Carosati E. Baroni M. Mannhol R. J. Med. Chem.  2005,  48:  3756 
  • 4b Llauger L. He H. Kim J. Aguirre J. Rosen N. Peters U. Davies P. Chiosis G. J. Med. Chem.  2005,  48:  2892 
  • 4c Otzen T. Wempe EG. Kunz B. Bartels R. Lehwark-Yvetot G. Hänsel W. Schaper K.-J. Seydel JK. J. Med. Chem.  2004,  47:  240 
  • 4d Sun Z.-Y. Botros E. Su A.-D. Kim Y. Wang E. Baturay NZ. Kwon C.-H. J. Med. Chem.  2000,  43:  4160 
  • 5 McGarrigle EM. Myers EL. Illa O. Shaw MA. Riches SL. Aggarwal VK. Chem. Rev.  2007,  107:  5481 
  • 6a Mellah M. Voituriez A. Schulz E. Chem. Rev.  2007,  107:  5133 
  • 6b Murray SG. Hartley FR. Chem. Rev.  1981,  81:  365 
  • 7a Marcincal-Letebvre A. Gesquiere C. Lemer C. Dupuis B. J. Med. Chem.  1981,  24:  889 
  • 7b Liu G. Link JT. Pei Z. Reilly EB. Leitza S. Nguyen B. Marsh KC. Okasinski GF. von Geldem TW. Ormes M. Fowler K. Gallatin M. J. Med. Chem.  2000,  43:  4025 
  • 7c Gangjee A. Zeng Y. Talreja T. McGuire JJ. Kisliuk RL. Queener SF. J. Med. Chem.  2007,  50:  3046 
  • 7d Jarkas N. McConathy J. Voll RJ. Goodman MM. J. Med. Chem.  2005,  48:  4254 
  • 8a Ullmann F. Chem. Ber.  1904,  37:  853 
  • 8b Moroz AA. Shvartsberg MS. Russ. Chem. Rev.  1974,  43:  679 
  • 8c Lindley J. Tetrahedron  1984,  40:  1433 
  • 8d Thomas AW. Ley SV. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 8e Hassan J. Sevignon M. Gozzi C. Schulz C. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • 8f Evano G. Blanchard N. Toumi M. Chem. Rev.  2008,  108:  3054 
  • 8g Sawyer JS. Tetrahedron  2000,  56:  5045 
  • 8h Frlan R. Kikelj D. Synthesis  2006,  2271 
  • 9a Bunnett JF. Zahler RE. Chem. Rev.  1951,  49:  273 
  • 9b Sawyer JS. Tetrahedron  2000,  56:  5045 
  • 9c Sawyer JS. Schmittling EA. Palkowitz JA. Smith WJ. J. Org. Chem.  1998,  63:  6338 
  • 9d Duan Z. Ranjit S. Liu X. Org. Lett.  2010,  12:  2430 
  • 9e Cevera M. Marquet J. Martin X. Tetrahedron  1996,  52:  2557 
  • 9f Delfín DA. Morgan RE. Zhu X. Werbovetz KA. Bioorg. Med. Chem.  2009,  17:  820 
  • 10a Duan Z. Ranjit S. Zhang P. Liu X. Chem. Eur. J.  2009,  15:  3666 
  • 10b Ranjit S. Duan Z. Zhang P. Liu X. Org. Lett.  2010,  12:  4134 
  • 11a Lee J. Fuchter MJ. Williamson RM. Leeke GA. Bush EJ. McConvey IF. Saubern S. Ryanc JH. Holmes AB. Chem. Commun.  2008,  4780 
  • 11b Saunders DG. Synthesis  1988,  377 
  • 11c Urgaonkar S. Verkade JG. Org. Lett.  2005,  7:  3319 
  • 11d Oriyama T. Noda K. Yatabe K. Synlett  1997,  701 
  • 11e Ueno M. Hori C. Suzawa K. Ebisawa M. Kondo Y. Eur. J. Org. Chem.  2005,  1965 
  • 11f Samarakoon TB. Hur MY. Kurtz RD. Hanson PR. Org. Lett.  2010,  12:  2182 
  • 12a Brook MA. Silicon in Organic, Organometallic, and Polymer Chemistry   John Wiley & Sons; New York: 2000. 
  • 12b Colvin E. Silicon in Organic Synthesis   Butterworth; London: 1981. 
  • 12c Weber WP. Silicon Reagents for Organic Synthesis   Springer-Verlag; Berlin: 1983. 
  • 12d Green TW. Wuts PGM. Protective Groups in Organic Synthesis   3rd ed.:  Wiley; New York: 1999. 
  • 13a Gawronski J. Wascinska N. Gajewy J. Chem. Rev.  2008,  108:  5227 ; and references cited therein
  • 13b Furin GG. Vyazankina OA. Gostevsky BA. Vyazankin NS. Tetrahedron  1988,  44:  2675 ; and references cited therein
  • 14 Fernandez-Rodriguez MA. Hartwig JF. Chem. Eur. J.  2010,  16:  2355 
  • 15 Evans DA. Truesdale LK. Grimm KG. Nesbitt SL. J. Am. Chem. Soc.  1977,  99:  5009 
  • 16 Sala GD. Lattanzi A. Org. Lett.  2009,  11:  3330 
  • 17a Capperucci A. Tiberi C. Pollicino S. Innocenti AD. Tetrahedron Lett.  2009,  50:  2808 
  • 17b Degl’Innocenti A. Capperucci A. Cerreti A. Pollicino S. Scapecchi S. Malesci I. Castagnoli G. Synlett  2005,  3063 
  • 17c Tanabe Y. Mori K. Yoshida Y. J. Chem. Soc., Perkin Trans. 1  1997,  671 
  • 18a Xu Q. Huang X. Yuan J. J. Org. Chem.  2005,  70:  6948 
  • 18b Huang X. Liang CG. Xu Q. He QW. J. Org. Chem.  2001,  66:  74 
  • 19a Dallinger D. Kappe CO. Chem. Rev.  2007,  107:  2563 
  • 19b Yu X. Huang X. Synlett  2002,  1895 
  • 19c Xu Q. Han L.-B. Org. Lett.  2006,  8:  2099 
  • 19d Ren A. Yang X. Hong J. Yu X. Synlett  2008,  2376 
  • 20a

    Typical Procedure for Microwave-Promoted TBAF-Catalyzed S N Ar Reaction of ArSTMS and Aryl Fluorides: The mixture of phenylthiotrimethylsilane (1a; 0.218 g, 1.2 mmol, 1.2 equiv), p-nitrophenyl fluoride (2a; 0.141 g, 1.0 mmol), and TBAF (2.61 mg, 1 mol%) in MeCN (2 mL) was placed in a microwave oven flask under air and then stirred at r.t. (ca. 25 ˚C) under microwave irradiation (600 w) for 5 h and the reaction was monitored by TLC and/or GC-MS. The solvent was then evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 97% yield of 3aa. An XH-100A microwave synthesis/extraction instrument, made by Beijing Xiang Hu Science and Technology Development Co. Ltd., was employed in above microwave irradiation reactions.
    (4-Nitrophenyl)phenylthioether (3aa): ¹H NMR (300 MHz, CDCl3): δ = 8.05 (d, J = 7.0 Hz, 2 H), 7.53-7.56 (m, 2 H), 7.45-7.48 (m, 3 H), 7.17 (d, J = 7.0 Hz, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 148.5, 145.4, 134.7, 130.4, 130.0, 129.7, 126.7, 124.0.

  • 20b This compound is known, see: Lee JY. Lee PH. J. Org. Chem.  2008,  73:  7413 
  • 21 Amii H. Uneyama K. Chem. Rev.  2009,  109:  2119 ; and references cited therein
  • 22a Kim YM. Yu S. J. Am. Chem. Soc.  2003,  125:  1696 
  • 22b Wendt MD. Kunzer AR. Tetrahedron Lett.  2010,  51:  3041 
  • 22c Li F. Wang Q. Ding Z. Tao F. Org. Lett.  2003,  5:  2169 
  • 23 Beck JR. Tetrahedron  1978,  34:  2057 
  • 25 After submission of this work, we noticed that Thiel and co-workers reported a similar fluoride ion catalyzed amination of substituted fluoroarenes using trimethylsilylimidazole as the nitrogen source: Dehe D. Munstein I. Reis A. Thiel WR. J. Org. Chem.  2011,  76:  1151 
24

It was observed other TBAX salts (X = Cl, Br, I) did not show any catalytic activity at all in the present reactions.