Synthesis 2011(10): 1561-1568  
DOI: 10.1055/s-0030-1260000
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Reactions of Unsaturated Azides; Part 27: [¹] Synthesis of 1,4-Diazidobuta-1,3-dienes

Klaus Banert*a, Frank Köhlera, Antje Melzera, Ingolf Scharfa, Gerd Rheinwaldb, Tobias Rüfferb, Heinrich Langb
a Chemnitz University of Technology, Organic Chemistry, Straße der Nationen 62, 09111 Chemnitz, Germany
Fax: +49(371)53121229; e-Mail: klaus.banert@chemie.tu-chemnitz.de;
b Chemnitz University of Technology, Inorganic Chemistry, Straße der Nationen 62, 09111 Chemnitz, Germany
Further Information

Publication History

Received 28 February 2011
Publication Date:
15 April 2011 (online)

Abstract

Three different methods to prepare 1,4-diazidobuta-1,3-dienes are presented: nucleophilic substitution of electron-poor dichlorinated substrates, nucleophilic addition of hydrazoic acid at an electron-deficient diallene, and a sequence of prototropic isomerizations of propargyl sulfones followed by nucleophilic additions. In all cases, isolation and assignment of the diastereomeric products was possible, and some sequential reactions, such as reduction or 1,3-dipolar cycloaddition of the azido groups, were performed.

    References

  • 1 For part 26, see: Firdous S. Banert K. Auer AA. Chem. Eur. J.  2011,  17 , in press
  • For reviews on vinyl azides, see:
  • 2a Banert K. In Houben-Weyl   Vol. E15:  Kropf H. Schaumann E. Thieme; Stuttgart: 1993.  p.818-875  
  • 2b Hassner A. In Azides and Nitrenes   Scriven EFV. Academic Press; Orlando: 1984.  p.35-76  
  • 2c Banert K. In Organic Azides: Syntheses and Applications   Bräse S. Banert K. Wiley; Chichester: 2010.  p.115-166  
  • 2d Collier SJ. In Science of Synthesis   Vol. 33:  Molander GA. Thieme; Stuttgart: 2006.  p.541-563  
  • 2e Smolinsky G. Pryde CA. In The Chemistry of the Azido Group   Patai S. Wiley; New York: 1971.  p.555-585  
  • 3a Padwa A. Blacklock TJ. Carlsen PHJ. Pulwer M. J. Org. Chem.  1979,  44:  3281 
  • 3b Padwa A. Smolanoff J. Tremper A. J. Org. Chem.  1976,  41:  543 
  • 4 Hassner A. Levy LA. J. Am. Chem. Soc.  1965,  87:  4203 
  • 5 For a review, see: Hassner A. Acc. Chem. Res.  1971,  4:  9 
  • 6 Hassner A. Keogh J. Tetrahedron Lett.  1975,  1575 
  • 7a Banert K. Köhler F. Angew. Chem. Int. Ed.  2001,  40:  174 ; Angew. Chem. 2001, 113, 173
  • 7b Banert K. Grimme S. Herges R. Heß K. Köhler F. Mück-Lichtenfeld C. Würthwein E.-U. Chem. Eur. J.  2006,  12:  7467 
  • 8 Gallagher TC. Storr RC. Tetrahedron Lett.  1981,  22:  2905 
  • 9a Farmer EH. J. Chem. Soc., Trans.  1923,  123:  2531 
  • 9b Baeyer A. Rupe H. Justus Liebigs Ann. Chem.  1890,  256:  1 
  • 10a Treibs W. Walther H. Chem. Ber.  1955,  88:  396 
  • 10b Roeding A. Kiepert K. Chem. Ber.  1955,  88:  733 
  • 10c Treibs W. Zimmermann G. Chem. Ber.  1957,  90:  1146 
  • 12 Takei S. Nakajima M. Tomida I. Chem. Ber.  1956,  89:  263 
  • 13 Einspahr H. Donohue J. Acta Crystallogr., Sect. B: Struct. Sci.  1973,  29:  1875 
  • 14a Vögeli U. von Philipsborn W. Org. Magn. Reson.  1975,  7:  617 
  • 14b Braun S. Org. Magn. Reson.  1978,  11:  197 
  • 15a Nesmeyanov AN. Rybinskaya MI. Kelekhsaeva TG. J. Org. Chem. USSR (Engl. Transl.)  1968,  4:  897 
  • 15b Rybinskaya MI. Nesmeyanov AN. Kochetkov NK. Russ. Chem. Rev. (Engl. Transl.)  1969,  38:  433 
  • 16 For another example of configuration change due to the formation of the thermodynamically favored vinyl azide, see: Jonas J. Mazal C. Rappoport Z. J. Phys. Org. Chem.  1994,  7:  652 
  • 17 Tietze LF. Eicher T. Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium   Thieme; Stuttgart: 1991.  p.40 
  • 18 Cai B.-z. Blackburn GM. Synth. Commun.  1997,  27:  3943 
  • 19a Palacios F. Aparicio D. de los Santos JM. Perez de Heredia I. Rubiales G. Org. Prep. Proced. Int.  1995,  27:  171 
  • 19b Fendel W. Dissertation   TU Chemnitz; Germany: 1997. 
  • 19c Duncan M. Gallagher MJ. Org. Magn. Reson.  1981,  15:  37 
  • 20 Thyagarajan BS. Glaspy PE. Baker E. Org. Mass Spectrom.  1980,  15:  224 
  • 21 For a review on acceptor-substituted allenes, see: Banert K. Lehmann J. In Modern Allene Chemistry   Krause N. Hashmi ASK. Wiley-VCH; Weinheim: 2004.  p.359 
  • 22 Organic Azides: Syntheses and Applications   Bräse S. Banert K. John Wiley & Sons Ltd.; Chichester: 2010. 
  • 23 Sheldrick GM. SHELXTL Version 5.1, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data   Siemens Analytical X-ray Instruments; Madison WI: 1990. 
11

The trans,trans structure of the higher-melting diastereoisomer of 7 was discussed,¹² and the crystal and molecular structure of dimethyl trans,trans-2,5-dichloro-muconate was determined by single-crystal X-ray diffraction techniques.¹³ In the latter case, however, neither the melting point nor other information on 7 including the method used to prepare this compound were given. Thus, the found (Z,Z)-configuration could not be assigned to the substances depicted in Scheme  [²] .