RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260010
A Chemo-Enzymatic Synthesis of β-d-Arabinofuranosyl Purine Nucleosides
Publikationsverlauf
Publikationsdatum:
19. April 2011 (online)
Abstract
A chemo-enzymatic synthesis of 9-(β-d-arabinofuranosyl)-2-fluoroadenine (Fludarabine) and 9-(β-d-arabinofuranosyl)-2-amino-6-methoxypurine (Nelarabine) using α-d-arabinofuranose 1-phosphate as a universal substrate and recombinant E. coli purine nucleoside phosphorylase (PNP) as a biocatalyst is described. MacDonald’s method was employed for the synthesis of α-d-arabinofuranose 1-phosphate, which was prepared as a mixture with β-d-arabinopyranose 1-phosphate, starting from peracyl derivatives of d-arabinose of different isomeric (anomeric) composition. It was found that the mixed phosphates can be successfully used in the reaction with purine base catalyzed by PNP pointing to the inertia of β-d-arabinopyranose 1-phosphate in regard to PNP. Reaction of 2-fluoroadenine and α-d-arabinofuranose 1-phosphate is shifted towards the formation of Fludarabine, whereas the reaction of 2-amino-6-methoxypurine reached equilibrium at a ca. equimolar ratio of the base and Nelarabine. Recombinant E. coli uridine phosphorylase catalyzed the synthesis of 1-(β-d-arabinofuranosyl)thymine (ara-T) from thymine and α-d-arabinofuranose 1-phosphate.
Key words
α-d-arabinofuranose 1-phosphate - recombinant E.coli nucleoside phosphorylases - purine nucleosides - ara-T
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Mikhailopulo IA. Curr. Org. Chem. 2007, 11: 317 -
1b
Mikhailopulo IA.Miroshnikov AI. Acta Naturae 2010, 2: 36 -
1c
Mikhailopulo IA.Miroshnikov AI. Mendeleev Commun. 2011, 21: 57 - 2
Lewkowics ES.Iribarren AM. Curr. Org. Chem. 2006, 10: 1197 -
3a
Ouwerkerk N.van Boom JH.Lugtenburg J.Raap J. Eur. J. Org. Chem. 2000, 861 -
3b
Ouwerkerk N.Steenweg M.De Ruijter M.Brouwer J.van Boom JH.Lugtenburg J.Raap J. J. Org. Chem. 2002, 67: 1480 -
4a
Ogawa J.Saito K.Sakai T.Horinouchi N.Kawano T.Matsumoto S.Sasaki M.Mikami Y.Shimizu S. Biosci., Biotechnol., Biochem. 2003, 67: 933 -
4b
Ishige T.Honda K.Shimizu S. Curr. Opin. Chem. Biol. 2005, 9: 174 -
5a
Horinouchi N.Ogawa J.Kawano T.Sakai T.Saito K.Matsumoto S.Sasaki M.Mikami Y.Shimizu S. Appl. Microbiol. Biotechnol. 2006, 71: 615 -
5b
Horinouchi N.Ogawa J.Kawano T.Sakai T.Saito K.Matsumoto S.Sasaki M.Mikami Y.Shimizu S. Biosci., Biotechnol., Biochem. 2006, 70: 1371 -
5c
Horinouchi N.Ogawa J.Kawano T.Sakai T.Saito K.Matsumoto S.Sasaki M.Mikami Y.Shimizu S. Biotechnol. Lett. 2006, 28: 877 -
5d
Ogawa J. New Biotechnol. 2009, 26: 75 - 6
Taverna-Porro M.Bouvier LA.Pereira CA.Montserrat JM.Iribarren AM. Tetrahedron Lett. 2008, 49: 2642 -
7a
Komatsu H.Awano H. J. Org. Chem. 2002, 67: 5419 -
7b
Komatsu H.Ikeda I. Nucleosides, Nucleotides Nucleic Acids 2003, 22: 1685 - 8
Komatsu H.Araki T. Tetrahedron Lett. 2003, 44: 2899 -
9a
Komatsu H.Awano H.Ishibashi H.Oikawa I.Araki T. Nucleic Acids Symp. Ser. 2003, 3: 101 -
9b
Komatsu H.Araki T. Nucleosides, Nucleotides Nucleic Acids 2005, 24: 1127 -
10a
Yamada K.Matsumoto N.Hayakawa H. Nucleic Acids Symp. Ser. 2004, 48: 45 -
10b
Yamada K.Matsumoto N.Hayakawa H. Nucleosides, Nucleotides Nucleic Acids 2009, 28: 1117 - 11
de Lederkremer RM.Nahmad VB.Varela O. J. Org. Chem. 1994, 59: 690 - 12
Euzen R.Ferrieres V.Plusquellec D. J. Org. Chem. 2005, 70: 847 ; and references cited therein - 13
Hanessian S.Lou B. Chem. Rev. 2000, 100: 4443 -
14a
MacDonald DL. J. Org. Chem. 1962, 27: 1107 -
14b
MacDonald DL. Carbohydr. Res. 1966, 3: 117 -
14c
MacDonald DL. Carbohydr. Res. 1968, 6: 376 -
14d
Mendicino J.Hanna R. J. Biol. Chem. 1970, 245: 6113 -
14e
Chittenden GJF. Carbohydr. Res. 1972, 25: 35 - 15
Wright RS.Khorana HG. J. Am. Chem. Soc. 1958, 80: 1994 ; see also detailed discussion in this paper - 16
Maryanoff BE.Reitz AB.Nortey SO. Tetrahedron 1988, 44: 3093 - 17
Aspinall GO.Cottrell IW.Matheson NK. Can. J. Biochem. 1972, 50: 574 - 18
Kobayashi M. Tetrahedron 2002, 58: 9365 - 19
Hanessian S.Lu P.-P.Ishida H. J. Am. Chem. Soc. 1998, 120: 13296 - 20
Plesner PE.Klenow H. Methods Enzymol. 1957, 3: 181 - 21
Sokolov VM.Rusavskaya TN.Studentsov EP.Zaharov VI.Ivanov MA.Sochilin EG. Zh. Obshch. Khim. 1981, 51: 946 ; Chem. Abstr. 1981, 95, 133270 - 22
Kam BL.Oppenheimer NJ. Carbohydr. Res. 1979, 69: 308 - 23
Bock K.Pedersen C. Carbohydr. Res. 1973, 29: 331 - 24
Kam BL.Barascut J.-L.Imbach J.-L. Carbohydr. Res. 1979, 69: 135 - 25
Lichtenthaler FW.Breunig J.Fischer W. Tetrahedron Lett. 1971, 12: 2825 - 27
Asseline U.Hau J.-F.Czernecki S.Diguarher T.Perlat M.-C.Valery J.-M.Thuong NT. Nucleic Acids Res. 1991, 19: 4067 - 28
Esipov RS.Gurevich AI.Chuvikovsky DV.Chupova LA.Muravyova TI.Miroshnikov AI. Protein Expr. Purif. 2002, 24: 56 - 29
Averett DR.Koszalka GW.Fyfe JA.Roberts GB.Purifoy DJ.Krenitsky TA. Antimicrob. Agents Chemother. 1991, 35: 851 - 30
Roivainen J.Elizarova T.Lapinjoki S.Mikhailopulo IA.Esipov RS.Miroshnikov AI. Nucleosides, Nucleotides Nucleic Acids 2007, 26: 905 - 32
Montgomery JA.Hewson K. J. Med. Chem. 1969, 12: 498 - 33
Mikhailopulo IA.Kalinichenko E. N.Zaitseva G. V.Akhrem AA. Biol. Mass. Spectrom. 1982, 9: 225 - 34
Chattopadhyaya J.Reese C. B. Synthesis 1978, 908 - 35
Schinazi RF.Chen M. S.Prusoff WH. J. Med. Chem. 1979, 22: 1273
References
It is noteworthy that a mixture of
the 1α and 1β furanosides¹5 is
unstable at r.t. giving rise to the formation of two new fractions
that have been isolated by silica gel column chromatography. One
of them consists of two triacetates (¹H, ¹³C
NMR). Detailed NMR analysis (¹H, ¹³C
NMR; COSY, HMBC, TOCSY, and NOE) along with the ab initio geometry
optimization (HyperChem, 8.1; in vacuo, basis set; 6-31G*)
of the relevant structures led us to conclusion that the major constituent
is 2,3,5-tri-O-acetyl-α-d-arabino-furanose and the minor is 2,3,4-tri-O-acetyl-β-d-arabino-pyranose.
The formation of the former as a byproduct was previously mentioned²² in
the transformation of methyl 2,3,5-tri-O-acetyl-α-d-arabinofuranoside into 1,2,3,5-tetra-O-acetyl-α-d-arabinofuranose
through the intermediate
1-bromide, however, no NMR data
was given. The other fraction consists of three (ca. 1:1:1 according
to ¹H NMR) supposedly acyclic closely related
isomeric tetraacetates, the structures of which have not yet been
established.
Tintagel Ltd, 2nd Floor, Eton Tower, 8 Hysan Avenue, Causeway Bay, Hong Kong; Tel.: +852(2910)7843; Fax: +852(2910)7844; E-mail: kacin@netvigator.com.