RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260040
Stereoselective Acetate Aldol Reactions from Metal Enolates
Publikationsverlauf
Publikationsdatum:
10. Mai 2011 (online)
Abstract
This review deals with stereoselective acetate aldol reactions mediated by metal enolates. It summarizes recent advances in aldol additions of unsubstituted metal enolates that either incorporate chiral auxiliaries, stoichiometric Lewis acids, or catalytic Lewis acids or bases, or act in substrate-controlled reactions. These approaches provide stereocontrolled aldol transformations that allow the efficient synthesis of structurally complex natural products.
1 Introduction
2 Chiral Auxiliaries
3 Stoichiometric Lewis Acids
4 Catalytic Lewis Acids and Bases
5 Substrate-Controlled Aldol Reactions
5.1 α-Methyl Ketones
5.2 α-Hydroxy Ketones
5.3 β-Hydroxy Ketones
5.4 β-Hydroxy α-Methyl Ketones
5.5 α,β-Dihydroxy Ketones
5.6 Remote Stereocontrol
6 Conclusions
Key words
stereoselective acetate aldol reactions - metal enolates - chiral auxiliaries - Lewis acids - substrate-controlled reactions
-
1a
Braun M. In Houben-Weyl Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1603 -
1b
Cowden CJ.Paterson I. Org. React. 1997, 51: 1 -
1c
Palomo C.Oiarbide M.García JM. Chem. Eur. J. 2002, 8: 36 -
1d
Palomo C.Oiarbide M.García JM. Chem. Soc. Rev. 2004, 33: 65 -
1e
Modern Aldol
Reactions
Mahrwald R. Wiley-VCH; Weinheim: 2004. -
1f
Geary LM.Hultin PG. Tetrahedron: Asymmetry 2009, 20: 131 -
2a
Yeung K.-S.Paterson I. Angew. Chem. Int. Ed. 2002, 41: 4632 -
2b
Yeung K.-S.Paterson I. Chem. Rev. 2005, 105: 4237 -
2c
Schetter B.Mahrwald R. Angew. Chem. Int. Ed. 2006, 45: 7506 -
2d
Brodmann T.Lorenz M.Schäckel R.Simsek S.Kalesse M. Synlett 2009, 174 -
2e
Li J.Menche D. Synthesis 2009, 2293 - 3 For an early review, see:
Braun M. Angew. Chem., Int. Ed. Engl. 1987, 26: 24 -
5a
Evans DA.Bartroli J.Shih TL. J. Am. Chem. Soc. 1981, 103: 2127 -
5b
Heathcock CH.Pirrung MC.Lampe J.Buse CT.Young SD. J. Org. Chem. 1981, 46: 2290 -
5c
Masamune S.Lu LD.-L.Jackson WP.Kaiho T.Toyoda T. J. Am. Chem. Soc. 1982, 104: 5523 -
6a
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357 -
6b
Mahrwald R. Chem. Rev. 1999, 99: 1095 -
6c
Carreira EM. In Comprehensive Asymmetric Catalysis IIIJacobsen EN.Pfaltz A.Yamamoto H. Springer Verlag; Berlin: 1999. Chap. 29.1. p.997 -
6d
Carreira EM.Fettes A.Marti C. Org. React. 2006, 67: 1 -
7a
Pellissier H. Tetrahedron 2007, 63: 9267 -
7b
Guillena C.Nájera C.Ramón DJ. Tetrahedron: Asymmetry 2007, 18: 2249 -
7c
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 -
7d
Trost BM.Brindle CS. Chem. Soc. Rev. 2010, 39: 1600 -
9a
Li Y.Paddon-Row MN.Houk KN. J. Org. Chem. 1990, 55: 481 -
9b
Goodman JM.Kahn SD.Paterson I. J. Org. Chem. 1990, 55: 3295 -
9c
Bernardi A.Capelli AM.Gennari C.Goodman JM.Paterson I. J. Org. Chem. 1990, 55: 3576 -
9d
Bernardi A.Gennari C.Goodman JM.Paterson I. Tetrahedron: Asymmetry 1995, 6: 2613 -
9e
Liu CM.Smith WJ.Gustin DJ.Roush WR. J. Am. Chem. Soc. 2005, 127: 5770 -
11a
Braun M.Gräf S.Herzog S. Org. Synth. 1995, 72: 32 -
11b
Braun M.Gräf S. Org. Synth. 1995, 72: 38 -
12a
Schinzer D.Bauer A.Böhm OM.Limberg A.Cordes M. Chem. Eur. J. 1999, 5: 2483 -
12b
Lentsch C.Rinner U. Org. Lett. 2009, 11: 5326 - Occasionally, high diastereoselectivities have also been achieved at -78 ˚C. See:
-
13a
Roth BD.Blankley CJ.Chucholowski AW.Ferguson E.Hoefle ML.Ortwine DF.Newton RS.Sekerke CS.Sliskovic DR.Stratton CD.Wilson MW. J. Med. Chem. 1991, 34: 357 -
13b
Tempkin O.Abel S.Chen C.-P.Underwood R.Prasad K.Chen K.-M.Repic O.Blacklock TJ. Tetrahedron 1997, 53: 10659 - 14 A chiral phenol also affords high
yields and diastereo-selectivities under milder conditions but it
has been scarcely used. See:
Saito S.Hatanaka K.Kano T.Yamamoto H. Angew. Chem. Int. Ed. 1998, 37: 3378 - For recent examples, see:
-
16a
Maggiotti V.Wong J.-B.Razet R.Cowley AR.Gouverneur V. Tetrahedron: Asymmetry 2002, 13: 1789 -
16b
Liang Q.Zhang J.Quan W.Sun Y.She X.Pan X. J. Org. Chem. 2007, 72: 2694 - 17
Nagao Y.Yamada S.Kumagai T.Ochiai M.Fujita E. J. Chem. Soc., Chem. Commun. 1985, 1418 - 18
Nagao Y.Hagiwara Y.Kumagai T.Ochiai M.Inoue T.Hashimoto K.Fujita E. J. Org. Chem. 1986, 51: 2391 - 20
Mukaiyama T.Kobayashi S. Org. React. 1994, 46: 1 - For the use of tin(II)-mediated aldol reactions based on N-acetyl oxazolidinethiones and thiazolidinethiones in the synthesis of natural products, see:
-
21a
Paquette LA.Zuev D. Tetrahedron Lett. 1997, 38: 5115 -
21b
Romo D.Rzasa RM.Shea HA.Park K.Langenhan JM.Sun L.Akhiezer A.Liu JO. J. Am. Chem. Soc. 1998, 120: 12237 -
21c
Sinz CJ.Rychnovsky SD. Tetrahedron 2002, 58: 6561 -
21d
Paterson I.Steven A.Luckhurst CA. Org. Biomol. Chem. 2004, 2: 3026 -
21e
Frenzel T.Brünjes M.Quitschalle M.Kirschning A. Org. Lett. 2006, 8: 135 -
21f
Ciblat S.Kim J.Stewart CA.Wang J.Forgione P.Clyne D.Paquette LA. Org. Lett. 2007, 9: 719 -
21g
Scheerer JR.Lawrence JF.Wang GC.Evans DA. J. Am. Chem. Soc. 2007, 129: 8968 -
21h
Smith TE.Kuo W.-H.Balskus EP.Bock VD.Roizen JL.Theberge AB.Carroll KA.Kurihara T.Wessler JD. J. Org. Chem. 2008, 73: 142 -
21i
Riatto VB.Pilli AA.Victor MM. Tetrahedron 2008, 64: 2279 - 22
Yan T.-H.Hung A.-W.Lee H.-C.Chang C.-S.Liu W.-H. J. Org. Chem. 1995, 60: 3301 - 24
González A.Aiguadé J.Urpí F.Vilarrasa J. Tetrahedron Lett. 1996, 37: 8949 - 25 For the preparation of N-acyl-1,3-thiazolidine-2-thiones, see:
Gálvez E.Romea P.Urpí F. Org. Synth. 2009, 86: 70 - For the use of titanium(IV)-mediated aldol reactions from chiral N-acetyl-4-alkyl-1,3-thiazolidine-2-thiones in the synthesis of natural products, see:
-
26a
Crimmins MT.Emmitte KA. Org. Lett. 1999, 1: 2029 -
26b
Crimmins MT.Siliphaivanh P. Org. Lett. 2003, 5: 4641 -
26c
Sugiyama H.Yokokawa F.Shioiri T. Tetrahedron 2003, 59: 6579 -
26d
Yurek-George A.Habens F.Brimmell M.Packham G.Ganesan A. J. Am. Chem. Soc. 2004, 126: 1030 -
26e
Smith TE.Djang M.Velander AJ.Downey CW.Carroll KA.van Alphen S. Org. Lett. 2004, 6: 2317 -
26f
Kobayashi Y.Fukuda A.Kimachi T.Motoharu J.-i.Takemoto Y. Tetrahedron 2005, 61: 2607 -
26g
Smith AB.Simov V. Org. Lett. 2006, 8: 3315 -
26h
Jogireddy R.Maier ME. J. Org. Chem. 2006, 71: 6999 -
26i
White JD.Lincoln CM.Yang J.Martin WHC.Chan DB. J. Org. Chem. 2008, 73: 4139 -
26j
Yajima A.van Brussel AAN.Schripsema J.Nukada T.Yabuta G. Org. Lett. 2008, 10: 2047 -
26k
Skaanderup PR.Jensen T. Org. Lett. 2008, 10: 2821 -
26l
Ren Q.Dai L.Zhang H.Tan W.Xu Z.Ye T. Synlett 2008, 2379 -
26m
Bock M.Dehn R.Kirschning A. Angew. Chem. Int. Ed. 2008, 47: 9134 -
26n
She J.Lampe JW.Polianski AB.Watson PS. Tetrahedron Lett. 2009, 50: 298 -
26o
White JD.Yang J. Synlett 2009, 1713 -
26p
Crimmins MT.Ellis JM.Emmitte KA.Haile PA.McDougall PJ.Parrish JD.Zuccarello JL. Chem. Eur. J. 2009, 15: 9223 -
26q
Brodmann T.Janssen D.Sasse F.Irschik H.Jansen R.Müller R.Kalesse M. Eur. J. Org. Chem. 2010, 5155 -
26r
Li W.Schlecker A.Ma D. Chem. Commun. 2010, 46: 5403 -
26s
See also reference 21e.
- 27
Le Sann C.Muñoz DM.Saunders N.Simpson TJ.Smith DI.Soulas F.Watts P.Willis CL. Org. Biomol. Chem. 2005, 3: 1719 -
28a
Hintermann T.Seebach D. Helv. Chim. Acta 1998, 81: 2093 -
28b
Doi T.Iijima Y.Shin-ya K.Ganesan A.Takahashi T. Tetrahedron Lett. 2006, 47: 1177 -
29a
Guz NR.Phillips AJ. Org. Lett. 2002, 4: 2253 -
29b
Crimmins MT.DeBaillie AC. Org. Lett. 2003, 5: 3009 -
29c
Chen Y.Gambs C.Abe Y.Wentworth P.Janda KD. J. Org. Chem. 2003, 68: 8902 -
29d
Carrick JD.Jennings MP. Org. Lett. 2009, 11: 769 -
29e
See also reference 26o.
- 30
Crimmins MT.Shamszad M. Org. Lett. 2007, 9: 149 -
31a
Zhang Y.Phillips AJ.Sammakia T. Org. Lett. 2004, 6: 23 -
31b
Zhang Y.Sammakia T. Org. Lett. 2004, 6: 3139 -
31c
Zhang Y.Sammakia T. J. Org. Chem. 2006, 71: 6262 -
32a
Crimmins MT.Dechert A.-MR. Org. Lett. 2009, 11: 1635 -
32b
Crimmins MT.O’Bryan EA. Org. Lett. 2010, 12: 4416 -
33a
Osorio-Lozada A.Olivo HF. Org. Lett. 2008, 10: 617 -
33b
Tello-Aburto R.Olivo HF. Org. Lett. 2008, 10: 2191 -
33c
Numajiri Y.Takahashi T.Takagi M.Shin-ya K.Doi T. Synlett 2008, 2483 -
33d
Osorio-Lozada A.Olivo HF. J. Org. Chem. 2009, 74: 1360 - 34 For related studies on an N-acetyl-1,3-oxazolidine-2-selone, see:
Silks LA.Kimball DB.Hatch D.Ollivault-Shiflett M.Michalczyk R.Moody E. Synth. Commun. 2009, 39: 641 - 35
Masamune S.Sato T.Kim BM.Wollmann TA. J. Am. Chem. Soc. 1986, 108: 8279 - 36
Corey EJ.Imwinkelried R.Pikul S.Xiang YB. J. Am. Chem. Soc. 1989, 111: 5493 -
37a
Paterson I.Goodman JM. Tetrahedron Lett. 1989, 30: 997 -
37b
Paterson I.Goodman JM.Lister MA.Schumann RC.McClure CK.Norcross RD. Tetrahedron 1990, 46: 4663 - 38
Gennari C.Moresca D.Vieth S.Vulpetti A. Angew. Chem., Int. Ed. Engl. 1993, 32: 1618 - 39
Duthaler RO.Herold P.Lottenbach W.Oertle K.Riediker M. Angew. Chem., Int. Ed. Engl. 1989, 28: 495 -
40a
Kageyama M.Tamura T.Nantz MH.Roberts JC.Somfai P.Whritenour DC.Masamune S. J. Am. Chem. Soc. 1990, 112: 7407 -
40b
Oertle K.Beyeler H.Duthaler RO.Lottenbach W.Riediker M.Steiner E. Helv. Chim. Acta 1990, 73: 353 -
40c
Gennari C.Moresca D.Vulpetti A.Pain G. Tetrahedron 1997, 53: 5593 -
40d
Martín M.Mas G.Urpí F.Vilarrasa J. Angew. Chem. Int. Ed. 1999, 38: 3086 -
40e
Lee CB.Wu Z.Zhang F.Chappell MD.Stachel SJ.Chou T.-C.Guan Y.Danishefsky S. J. Am. Chem. Soc. 2001, 123: 5249 -
40f
Bauer M.Maier ME. Org. Lett. 2002, 4: 2205 -
40g
Burova SA.McDonald FE. J. Am. Chem. Soc. 2004, 126: 2495 -
40h
Amans D.Bellosta V.Cossy J. Chem. Eur. J. 2009, 15: 3457 - 41
Alcaide B.Almendros P. Eur. J. Org. Chem. 2002, 1595 -
42a
Yamada YMA.Yoshikawa N.Sasai H.Shibasaki M. Angew. Chem., Int. Ed. Engl. 1997, 36: 1871 -
42b
Gröger H.Vogl EM.Shibasaki M. Chem. Eur. J. 1998, 4: 1137 - 43
Trost BM.Ito H. J. Am. Chem. Soc. 2000, 122: 12003 - 44 For mechanistic studies and an improved
catalyst, see:
Yoshikawa N.Yamada YMA.Das J.Sasai H.Shibasaki M. J. Am. Chem. Soc. 1999, 121: 4168 -
45a
Trost BM.Silcoff ER.Ito H. Org. Lett. 2001, 3: 2497 -
45b
Trost BM.Shin S.Sclafani JA. J. Am. Chem. Soc. 2005, 127: 8602 - 46
Maki K.Motoki R.Fujii K.Kanai M.Kobayashi T.Tamura S.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 17111 -
47a
Trost BM.Fettes A.Shireman BT. J. Am. Chem. Soc. 2004, 126: 2660 -
47b
Trost BM.Frederiksen MU.Papillon JPN.Harrington PE.Shin S.Shireman BT. J. Am. Chem. Soc. 2005, 127: 3666 - For recent comments about the application of this catalytic aldol reaction to the synthesis of natural products, see:
-
48a
Amans D.Bareille L.Bellosta V.Cossy J. J. Org. Chem. 2009, 74: 7665 -
48b
Trost BM.O’Boyle BM.Hund D. J. Am. Chem. Soc. 2009, 131: 15061 - 49
Iwata M.Yazaki R.Suzuki Y.Kumagai N.Shibasaki M. J. Am. Chem. Soc. 2009, 131: 18244 -
50a
Li H.Da C S.Xiao Y.-H.Li X.Su Y.-N. J. Org. Chem. 2008, 73: 7398 -
50b
Kobayashi S.Matsubara R. Chem. Eur. J. 2009, 15: 10694 -
51a
Denmark SE.Stavenger RA. J. Am. Chem. Soc. 2000, 122: 8837 -
51b
Denmark SE.Fujimori S.Pham SM. J. Org. Chem. 2005, 70: 10823 -
52a
Denmark SE.Fan Y. J. Am. Chem. Soc. 2002, 124: 4233 -
52b
Denmark SE.Fan Y.Eastgate MD. J. Org. Chem. 2005, 70: 5235 - For a comprehensive review on the use of chiral Lewis bases on stereoselective reactions and further applications on Mukaiyama-type aldol reactions, see:
-
53a
Denmark SE.Beutner GL. Angew. Chem. Int. Ed. 2008, 47: 1560 -
53b
Denmark SE.Eklov BM.Yao PJ.Eastgate MD. J. Am. Chem. Soc. 2009, 131: 11770 -
54a
Masamune S.Choy W.Petersen JS.Sita LR. Angew. Chem., Int. Ed. Engl. 1985, 24: 1 -
54b
Kolodiazhnyi OI. Tetrahedron 2003, 59: 5953 - 55
Paterson I.Goodman JM.Isaka M. Tetrahedron Lett. 1989, 30: 7121 - 56
Evans DA.Ripin DHB.Halstead DP.Campos KR. J. Am. Chem. Soc. 1999, 121: 6816 - 57
Paton RS.Goodman JM. J. Org. Chem. 2008, 73: 1253 -
58a
Shotwell JB.Roush WR. Org. Lett. 2004, 6: 3865 -
58b
Paterson I.Findlay AD.Florence GJ. Org. Lett. 2006, 8: 2131 -
58c
Paterson I.Paquet T. Org. Lett. 2010, 12: 2158 -
59a
O’Sullivan PT.Buhr W.Fuhry MAM.Harrison JR.Davies JE.Feeder N.Marshall DR.Burton JW.Holmes AB. J. Am. Chem. Soc. 2004, 126: 2194 -
59b
Paterson I.Anderson EA.Dalby SM.Loiseleur O. Org. Lett. 2005, 7: 4125 -
59c
Paterson I.Florence GJ.Heimann AC.Mackay AC. Angew. Chem. Int. Ed. 2005, 44: 1130 -
59d
Paterson I.Coster MJ.Chen DY.-K.Oballa RM.Wallace DJ.Norcross RD. Org. Biomol. Chem. 2005, 3: 2399 -
59e
Paterson I.Ashton K.Britton R.Cecere G.Chouraqui G.Florence GJ.Knust H.Stafford J. Chem. Asian J. 2008, 3: 367 -
59f
Paterson I.Gibson LJ.Kan SBJ. Org. Lett. 2010, 12: 5530 -
59g
See also reference 58b.
-
60a
Zhou X.-T.Lu L.Furkert DP.Wells CE.Carter RG. Angew. Chem. Int. Ed. 2006, 45: 7622 -
60b
Dunetz JR.Julian LD.Newcom JS.Roush WR. J. Am. Chem. Soc. 2008, 130: 16407 - 61
Ehrlich G.Hassfeld J.Eggert U.Kalesse M. Chem. Eur. J. 2008, 14: 2232 - 62 For previous studies, see:
Hassfeld J.Eggert U.Kalesse M. Synthesis 2005, 1183 - 63
Trost BM.Urabe H. J. Org. Chem. 1990, 55: 3982 - 64
Evans DA.Carter PH.Carreira EM.Charette AB.Prunet JA.Lautens M. J. Am. Chem. Soc. 1999, 121: 7540 - 65
Fürstner A.Kattnig E.Lepage O. J. Am. Chem. Soc. 2006, 128: 9194 - 66
Pellicena M.Solsona JG.Romea P.Urpí F. Tetrahedron Lett. 2008, 49: 5265 - 68
Lorenz M.Bluhm N.Kalesse M. Synthesis 2009, 3061 - 69 Interestingly, lithium and sodium
enolates from α-(N,N-dibenzylamino) methyl ketones undergo
aldol reactions delivering 1,4-syn aldols
with very high diastereoselectivity. See:
Lagu BR.Liotta DC. Tetrahedron Lett. 1994, 35: 4485 - 70
Lorente A.Pellicena M.Romea P.Urpí F. Tetrahedron Lett. 2010, 51: 942 - 72
Paterson I.Findlay AD.Noti C. Chem. Asian J. 2009, 4: 594 - 73
Lorenz M.Kalesse M. Org. Lett. 2008, 10: 4371 - 74
Guérinot A.Lepesqueux G.Sablé S.Reymond S.Cossy J. J. Org. Chem. 2010, 75: 5151 -
75a
Palomo C.González A.García JM.Landa C.Oiarbide M.Rodríguez S.Linden A. Angew. Chem. Int. Ed. 1998, 37: 180 -
75b
Palomo C.Oiarbide M.Aizpurua JM.González A.García JM.Landa C.Odriozola I.Linden A. J. Org. Chem. 1999, 64: 8193 -
75c
Palomo C.Oiarbide M.García JM.González A.Pazos R.Odriozola JM.Bañuelos P.Tello M.Linden A. J. Org. Chem. 2004, 69: 4126 -
76a
Paterson I.Gibson KR.Oballa RM. Tetrahedron Lett. 1996, 37: 8585 -
76b
Evans DA.Côté B.Coleman PJ.Connell BT. J. Am. Chem. Soc. 2003, 125: 10893 - 77 For a recent review, see:
Dias LC.Aguilar AM. Chem. Soc. Rev. 2008, 37: 451 -
78a
Paterson I.Tudge M. Tetrahedron 2003, 59: 6833 -
78b See also:
Fettes A.Carreira EM. J. Org. Chem. 2003, 68: 9274 - 79
Evans DA.Connell BT. J. Am. Chem. Soc. 2003, 125: 10899 - 80
Paterson I.Coster MJ.Chen DY.-K.Gibson KR.Wallace DJ. Org. Biomol. Chem. 2005, 3: 2410 - For remarkable and recent examples in this area, see:
-
81a
Evans DA.Trotter BW.Coleman PJ.Côté B.Dias LC.Rajapakse HA.Tyler AN. Tetrahedron 1999, 55: 8671 -
81b
Trieselmann T.Hoffmann RW. Org. Lett. 2000, 2: 1209 -
81c
Kozmin S. Org. Lett. 2001, 3: 755 -
81d
Paterson I.Collett LA. Tetrahedron 2001, 42: 1187 -
81e
Bhattacharjee A.Soltani O.De Brabender JK. Org. Lett. 2002, 4: 481 -
81f
Paterson I.Di Francesco ME.Kühn T. Org. Lett. 2003, 5: 599 -
81g
Denmark SE.Fujimori S. J. Am. Chem. Soc. 2005, 127: 8971 -
81h
Mitton-Fry MJ.Cullen AJ.Sammakia T. Angew. Chem. Int. Ed. 2007, 46: 1066 -
81i
Paterson I.Anderson EA.Dalby SM.Lim JH.Loiseleur O.Maltas P.Moessner C. Pure Appl. Chem. 2007, 79: 667 -
81j
Guo H.Mortensen MS.O’Doherty GA. Org. Lett. 2008, 10: 3149 -
81k
Evans DA.Welch DS.Speed AWH.Moniz GA.Reichelt A.Ho S. J. Am. Chem. Soc. 2009, 131: 3840 -
81l
Paterson I.Mühlthau FA.Cordier CJ.Housden MP.Burton PM.Loiseleur O. Org. Lett. 2009, 11: 353 -
81m
Li S.Chen Z.Xu Z.Ye T. Chem. Commun. 2010, 46: 4773 -
81n
See also reference 26b
-
82a
Paterson I.Coster MJ.Chen DY.-K.Aceña JL.Bach J.Keown LE.Trieselmann T. Org. Biomol. Chem. 2005, 3: 2420 -
82b
See also reference 26b.
- 83
Dias LC.de Marchi AA.Ferreira MAB.Aguilar AM. J. Org. Chem. 2008, 73: 6299 - 84
Dias LC.de Lucca EC.Ferreira MAB.Garcia DC.Tormena CF. Org. Lett. 2010, 12: 5056 - 85
Yamaoka Y.Yamamoto H. J. Am. Chem. Soc. 2010, 132: 5354 - For other examples, see:
-
86a
Mulzer J.Berger M. J. Org. Chem. 2004, 69: 891 -
86b
Arefolov A.Panek JS. J. Am. Chem. Soc. 2005, 127: 5596 -
86c
Dias LC.Aguilar AM.Salles AG.Steil LJ.Roush WR. J. Org. Chem. 2005, 70: 10461 -
86d
Kim YJ.Lee D. Org. Lett. 2006, 8: 5219 -
86e
Li P.Li J.Arikan F.Ahlbrecht W.Dieckmann M.Menche D. J. Org. Chem. 2010, 75: 2429 -
87a
Dias LC.Baú RZ.de Sousa MA.Zukerman-Schpector J. Org. Lett. 2002, 4: 4325 -
87b
Dias LC.Aguilar AM. Org. Lett. 2006, 8: 4629 - 88
Dias LC.Pinheiro SM.de Oliveira VM.Ferreira MAB.Tormena CF.Aguilar AM.Zukerman-Schpector J.Tiekink ERT. Tetrahedron 2009, 65: 8714 - 89
Roush WR.Bannister TD.Wendt MD.Jablonowski JA.Scheidt KA. J. Org. Chem. 2002, 67: 4275 - 90
Scheidt KA.Bannister TD.Tasaka A.Wendt MD.Savall BM.Fegley GJ.Roush WR. J. Am. Chem. Soc. 2002, 124: 6981 - 91
Crimmins MT.Katz JD.Washburn DG.Allwein SP.McAtee LF. J. Am. Chem. Soc. 2002, 124: 5661 -
93a
Chakraborty TK.Thippeswamy D.Suresh VR.Jayaprakash S. Chem. Lett. 1997, 563 -
93b
Ishiyama H.Takemura T.Tsuda M.Kobayashi J. J. Chem. Soc., Perkin Trans. 1 1999, 1163 -
93c
Cid MB.Pattenden G. Tetrahedron Lett. 2000, 41: 7373 -
93d
Fürstner A.Bouchez LC.Morency L.Funel J.-A.Liepins V.Porée F.-H.Gilmour R.Laurich D.Beaufils F.Tamiya M. Chem. Eur. J. 2009, 15: 3983 - 94
Lu L.Zhang W.Carter RG. J. Am. Chem. Soc. 2008, 130: 7253 - 95
Zhang W.Carter RG. Org. Lett. 2005, 7: 4209 - 96 For another example, see:
Chakraborty TK.Suresh VR. Tetrahedron Lett. 1998, 39: 7775 -
97a
Liesener FP.Jannsen U.Kalesse M. Synthesis 2006, 2590 -
97b
Deng L.Ma Z.Zhao G. Synlett 2008, 728 - 98
Paterson I.Florence GJ.Gerlach K.Scott JP.Sereinig N. J. Am. Chem. Soc. 2001, 123: 9535 - For an insightful account on the total syntheses of discodermolide, see:
-
99a
Paterson I.Florence GJ. Eur. J. Org. Chem. 2003, 2193 -
99b
Florence GJ.Gardner NM.Paterson I. Nat. Prod. Rep. 2008, 25: 342 - 100
Paterson I.Delgado O.Florence GJ.Lyothier I.Scott JP.Sereinig N. Org. Lett. 2003, 5: 35
References
The term acetate aldol reaction refers to any aldol transformation involving unsubstituted enolates, which encompasses the reactions of acetate esters, other carboxylic derivatives, and methyl ketones.
8The term metal enolate is used in a broad sense. It refers to enolates from boron, silicon, alkaline, titanium, tin, and other elements that participate in aldol reactions proceeding through cyclic transition states
10Stereoselective aldol reactions involving multifunctional catalysts often proceed through highly organized transition states that have more complex molecular arrangements
15It is worth recalling that the N-propanoyl counterpart was absolutely successful under the same experimental conditions and provided the Evans-syn diastereomer with a dr of 99.4:0.6. See reference 5a.
19Oxazolidinethiones turned out to be slightly less stereo-selective than the corresponding thiazolidinethiones for α,β-unsaturated aldehydes.
23Boron enolates afforded lower diastereomeric ratios.
67Similar results are obtained with other aliphatic α,β-unsaturated and aromatic aldehydes.
71In support of this theoretical model, it has been observed that the more sterically bulky the R group (Me to i-Pr), the better the diastereoselectivity for aliphatic as well as α,β-unsat-urated and aromatic aldehydes.
92See reference 81l and 82a.