RSS-Feed abonnieren
DOI: 10.1055/s-0030-1260040
Stereoselective Acetate Aldol Reactions from Metal Enolates
Publikationsverlauf
Publikationsdatum:
10. Mai 2011 (online)
Abstract
This review deals with stereoselective acetate aldol reactions mediated by metal enolates. It summarizes recent advances in aldol additions of unsubstituted metal enolates that either incorporate chiral auxiliaries, stoichiometric Lewis acids, or catalytic Lewis acids or bases, or act in substrate-controlled reactions. These approaches provide stereocontrolled aldol transformations that allow the efficient synthesis of structurally complex natural products.
1 Introduction
2 Chiral Auxiliaries
3 Stoichiometric Lewis Acids
4 Catalytic Lewis Acids and Bases
5 Substrate-Controlled Aldol Reactions
5.1 α-Methyl Ketones
5.2 α-Hydroxy Ketones
5.3 β-Hydroxy Ketones
5.4 β-Hydroxy α-Methyl Ketones
5.5 α,β-Dihydroxy Ketones
5.6 Remote Stereocontrol
6 Conclusions
Key words
stereoselective acetate aldol reactions - metal enolates - chiral auxiliaries - Lewis acids - substrate-controlled reactions
- 1a 
             
            
Braun M. In Houben-Weyl Vol. E21b:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.1603 - 1b 
             
            
Cowden CJ.Paterson I. Org. React. 1997, 51: 1 - 1c 
             
            
Palomo C.Oiarbide M.García JM. Chem. Eur. J. 2002, 8: 36 - 1d 
             
            
Palomo C.Oiarbide M.García JM. Chem. Soc. Rev. 2004, 33: 65 - 1e 
             
            Modern Aldol
               Reactions
              
             
            
Mahrwald R. Wiley-VCH; Weinheim: 2004. - 1f 
             
            
Geary LM.Hultin PG. Tetrahedron: Asymmetry 2009, 20: 131 - 2a 
             
            
Yeung K.-S.Paterson I. Angew. Chem. Int. Ed. 2002, 41: 4632 - 2b 
             
            
Yeung K.-S.Paterson I. Chem. Rev. 2005, 105: 4237 - 2c 
             
            
Schetter B.Mahrwald R. Angew. Chem. Int. Ed. 2006, 45: 7506 - 2d 
             
            
Brodmann T.Lorenz M.Schäckel R.Simsek S.Kalesse M. Synlett 2009, 174 - 2e 
             
            
Li J.Menche D. Synthesis 2009, 2293 - 3 For an early review, see:  
            
Braun M. Angew. Chem., Int. Ed. Engl. 1987, 26: 24 - 5a 
             
            
Evans DA.Bartroli J.Shih TL. J. Am. Chem. Soc. 1981, 103: 2127 - 5b 
             
            
Heathcock CH.Pirrung MC.Lampe J.Buse CT.Young SD. J. Org. Chem. 1981, 46: 2290 - 5c 
             
            
Masamune S.Lu LD.-L.Jackson WP.Kaiho T.Toyoda T. J. Am. Chem. Soc. 1982, 104: 5523 - 6a 
             
            
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357 - 6b 
             
            
Mahrwald R. Chem. Rev. 1999, 99: 1095 - 6c 
             
            
Carreira EM. In Comprehensive Asymmetric Catalysis IIIJacobsen EN.Pfaltz A.Yamamoto H. Springer Verlag; Berlin: 1999. Chap. 29.1. p.997 - 6d 
             
            
Carreira EM.Fettes A.Marti C. Org. React. 2006, 67: 1 - 7a 
             
            
Pellissier H. Tetrahedron 2007, 63: 9267 - 7b 
             
            
Guillena C.Nájera C.Ramón DJ. Tetrahedron: Asymmetry 2007, 18: 2249 - 7c 
             
            
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 - 7d 
             
            
Trost BM.Brindle CS. Chem. Soc. Rev. 2010, 39: 1600 - 9a 
             
            
Li Y.Paddon-Row MN.Houk KN. J. Org. Chem. 1990, 55: 481 - 9b 
             
            
Goodman JM.Kahn SD.Paterson I. J. Org. Chem. 1990, 55: 3295 - 9c 
             
            
Bernardi A.Capelli AM.Gennari C.Goodman JM.Paterson I. J. Org. Chem. 1990, 55: 3576 - 9d 
             
            
Bernardi A.Gennari C.Goodman JM.Paterson I. Tetrahedron: Asymmetry 1995, 6: 2613 - 9e 
             
            
Liu CM.Smith WJ.Gustin DJ.Roush WR. J. Am. Chem. Soc. 2005, 127: 5770 - 11a 
             
            
Braun M.Gräf S.Herzog S. Org. Synth. 1995, 72: 32 - 11b 
             
            
Braun M.Gräf S. Org. Synth. 1995, 72: 38 - 12a 
             
            
Schinzer D.Bauer A.Böhm OM.Limberg A.Cordes M. Chem. Eur. J. 1999, 5: 2483 - 12b 
             
            
Lentsch C.Rinner U. Org. Lett. 2009, 11: 5326 - Occasionally, high diastereoselectivities have also been achieved at -78 ˚C. See:
 - 13a 
             
            
Roth BD.Blankley CJ.Chucholowski AW.Ferguson E.Hoefle ML.Ortwine DF.Newton RS.Sekerke CS.Sliskovic DR.Stratton CD.Wilson MW. J. Med. Chem. 1991, 34: 357 - 13b 
             
            
Tempkin O.Abel S.Chen C.-P.Underwood R.Prasad K.Chen K.-M.Repic O.Blacklock TJ. Tetrahedron 1997, 53: 10659 - 14 A chiral phenol also affords high
            yields and diastereo-selectivities under milder conditions but it
            has been scarcely used. See:  
            
Saito S.Hatanaka K.Kano T.Yamamoto H. Angew. Chem. Int. Ed. 1998, 37: 3378 - For recent examples, see:
 - 16a 
             
            
Maggiotti V.Wong J.-B.Razet R.Cowley AR.Gouverneur V. Tetrahedron: Asymmetry 2002, 13: 1789 - 16b 
             
            
Liang Q.Zhang J.Quan W.Sun Y.She X.Pan X. J. Org. Chem. 2007, 72: 2694 - 17 
             
            
Nagao Y.Yamada S.Kumagai T.Ochiai M.Fujita E. J. Chem. Soc., Chem. Commun. 1985, 1418 - 18 
             
            
Nagao Y.Hagiwara Y.Kumagai T.Ochiai M.Inoue T.Hashimoto K.Fujita E. J. Org. Chem. 1986, 51: 2391 - 20 
             
            
Mukaiyama T.Kobayashi S. Org. React. 1994, 46: 1 - For the use of tin(II)-mediated aldol reactions based on N-acetyl oxazolidinethiones and thiazolidinethiones in the synthesis of natural products, see:
 - 21a 
             
            
Paquette LA.Zuev D. Tetrahedron Lett. 1997, 38: 5115 - 21b 
             
            
Romo D.Rzasa RM.Shea HA.Park K.Langenhan JM.Sun L.Akhiezer A.Liu JO. J. Am. Chem. Soc. 1998, 120: 12237 - 21c 
             
            
Sinz CJ.Rychnovsky SD. Tetrahedron 2002, 58: 6561 - 21d 
             
            
Paterson I.Steven A.Luckhurst CA. Org. Biomol. Chem. 2004, 2: 3026 - 21e 
             
            
Frenzel T.Brünjes M.Quitschalle M.Kirschning A. Org. Lett. 2006, 8: 135 - 21f 
             
            
Ciblat S.Kim J.Stewart CA.Wang J.Forgione P.Clyne D.Paquette LA. Org. Lett. 2007, 9: 719 - 21g 
             
            
Scheerer JR.Lawrence JF.Wang GC.Evans DA. J. Am. Chem. Soc. 2007, 129: 8968 - 21h 
             
            
Smith TE.Kuo W.-H.Balskus EP.Bock VD.Roizen JL.Theberge AB.Carroll KA.Kurihara T.Wessler JD. J. Org. Chem. 2008, 73: 142 - 21i 
             
            
Riatto VB.Pilli AA.Victor MM. Tetrahedron 2008, 64: 2279 - 22 
             
            
Yan T.-H.Hung A.-W.Lee H.-C.Chang C.-S.Liu W.-H. J. Org. Chem. 1995, 60: 3301 - 24 
             
            
González A.Aiguadé J.Urpí F.Vilarrasa J. Tetrahedron Lett. 1996, 37: 8949 - 25 For the preparation of N-acyl-1,3-thiazolidine-2-thiones, see:  
            
Gálvez E.Romea P.Urpí F. Org. Synth. 2009, 86: 70 - For the use of titanium(IV)-mediated aldol reactions from chiral N-acetyl-4-alkyl-1,3-thiazolidine-2-thiones in the synthesis of natural products, see:
 - 26a 
             
            
Crimmins MT.Emmitte KA. Org. Lett. 1999, 1: 2029 - 26b 
             
            
Crimmins MT.Siliphaivanh P. Org. Lett. 2003, 5: 4641 - 26c 
             
            
Sugiyama H.Yokokawa F.Shioiri T. Tetrahedron 2003, 59: 6579 - 26d 
             
            
Yurek-George A.Habens F.Brimmell M.Packham G.Ganesan A. J. Am. Chem. Soc. 2004, 126: 1030 - 26e 
             
            
Smith TE.Djang M.Velander AJ.Downey CW.Carroll KA.van Alphen S. Org. Lett. 2004, 6: 2317 - 26f 
             
            
Kobayashi Y.Fukuda A.Kimachi T.Motoharu J.-i.Takemoto Y. Tetrahedron 2005, 61: 2607 - 26g 
             
            
Smith AB.Simov V. Org. Lett. 2006, 8: 3315 - 26h 
             
            
Jogireddy R.Maier ME. J. Org. Chem. 2006, 71: 6999 - 26i 
             
            
White JD.Lincoln CM.Yang J.Martin WHC.Chan DB. J. Org. Chem. 2008, 73: 4139 - 26j 
             
            
Yajima A.van Brussel AAN.Schripsema J.Nukada T.Yabuta G. Org. Lett. 2008, 10: 2047 - 26k 
             
            
Skaanderup PR.Jensen T. Org. Lett. 2008, 10: 2821 - 26l 
             
            
Ren Q.Dai L.Zhang H.Tan W.Xu Z.Ye T. Synlett 2008, 2379 - 26m 
             
            
Bock M.Dehn R.Kirschning A. Angew. Chem. Int. Ed. 2008, 47: 9134 - 26n 
             
            
She J.Lampe JW.Polianski AB.Watson PS. Tetrahedron Lett. 2009, 50: 298 - 26o 
             
            
White JD.Yang J. Synlett 2009, 1713 - 26p 
             
            
Crimmins MT.Ellis JM.Emmitte KA.Haile PA.McDougall PJ.Parrish JD.Zuccarello JL. Chem. Eur. J. 2009, 15: 9223 - 26q 
             
            
Brodmann T.Janssen D.Sasse F.Irschik H.Jansen R.Müller R.Kalesse M. Eur. J. Org. Chem. 2010, 5155 - 26r 
             
            
Li W.Schlecker A.Ma D. Chem. Commun. 2010, 46: 5403 - 26s  
            
See also reference 21e.
 - 27 
             
            
Le Sann C.Muñoz DM.Saunders N.Simpson TJ.Smith DI.Soulas F.Watts P.Willis CL. Org. Biomol. Chem. 2005, 3: 1719 - 28a 
             
            
Hintermann T.Seebach D. Helv. Chim. Acta 1998, 81: 2093 - 28b 
             
            
Doi T.Iijima Y.Shin-ya K.Ganesan A.Takahashi T. Tetrahedron Lett. 2006, 47: 1177 - 29a 
             
            
Guz NR.Phillips AJ. Org. Lett. 2002, 4: 2253 - 29b 
             
            
Crimmins MT.DeBaillie AC. Org. Lett. 2003, 5: 3009 - 29c 
             
            
Chen Y.Gambs C.Abe Y.Wentworth P.Janda KD. J. Org. Chem. 2003, 68: 8902 - 29d 
             
            
Carrick JD.Jennings MP. Org. Lett. 2009, 11: 769 - 29e  
            
See also reference 26o.
 - 30 
             
            
Crimmins MT.Shamszad M. Org. Lett. 2007, 9: 149 - 31a 
             
            
Zhang Y.Phillips AJ.Sammakia T. Org. Lett. 2004, 6: 23 - 31b 
             
            
Zhang Y.Sammakia T. Org. Lett. 2004, 6: 3139 - 31c 
             
            
Zhang Y.Sammakia T. J. Org. Chem. 2006, 71: 6262 - 32a 
             
            
Crimmins MT.Dechert A.-MR. Org. Lett. 2009, 11: 1635 - 32b 
             
            
Crimmins MT.O’Bryan EA. Org. Lett. 2010, 12: 4416 - 33a 
             
            
Osorio-Lozada A.Olivo HF. Org. Lett. 2008, 10: 617 - 33b 
             
            
Tello-Aburto R.Olivo HF. Org. Lett. 2008, 10: 2191 - 33c 
             
            
Numajiri Y.Takahashi T.Takagi M.Shin-ya K.Doi T. Synlett 2008, 2483 - 33d 
             
            
Osorio-Lozada A.Olivo HF. J. Org. Chem. 2009, 74: 1360 - 34 For related studies on an N-acetyl-1,3-oxazolidine-2-selone, see:  
            
Silks LA.Kimball DB.Hatch D.Ollivault-Shiflett M.Michalczyk R.Moody E. Synth. Commun. 2009, 39: 641 - 35 
             
            
Masamune S.Sato T.Kim BM.Wollmann TA. J. Am. Chem. Soc. 1986, 108: 8279 - 36 
             
            
Corey EJ.Imwinkelried R.Pikul S.Xiang YB. J. Am. Chem. Soc. 1989, 111: 5493 - 37a 
             
            
Paterson I.Goodman JM. Tetrahedron Lett. 1989, 30: 997 - 37b 
             
            
Paterson I.Goodman JM.Lister MA.Schumann RC.McClure CK.Norcross RD. Tetrahedron 1990, 46: 4663 - 38 
             
            
Gennari C.Moresca D.Vieth S.Vulpetti A. Angew. Chem., Int. Ed. Engl. 1993, 32: 1618 - 39 
             
            
Duthaler RO.Herold P.Lottenbach W.Oertle K.Riediker M. Angew. Chem., Int. Ed. Engl. 1989, 28: 495 - 40a 
             
            
Kageyama M.Tamura T.Nantz MH.Roberts JC.Somfai P.Whritenour DC.Masamune S. J. Am. Chem. Soc. 1990, 112: 7407 - 40b 
             
            
Oertle K.Beyeler H.Duthaler RO.Lottenbach W.Riediker M.Steiner E. Helv. Chim. Acta 1990, 73: 353 - 40c 
             
            
Gennari C.Moresca D.Vulpetti A.Pain G. Tetrahedron 1997, 53: 5593 - 40d 
             
            
Martín M.Mas G.Urpí F.Vilarrasa J. Angew. Chem. Int. Ed. 1999, 38: 3086 - 40e 
             
            
Lee CB.Wu Z.Zhang F.Chappell MD.Stachel SJ.Chou T.-C.Guan Y.Danishefsky S. J. Am. Chem. Soc. 2001, 123: 5249 - 40f 
             
            
Bauer M.Maier ME. Org. Lett. 2002, 4: 2205 - 40g 
             
            
Burova SA.McDonald FE. J. Am. Chem. Soc. 2004, 126: 2495 - 40h 
             
            
Amans D.Bellosta V.Cossy J. Chem. Eur. J. 2009, 15: 3457 - 41 
             
            
Alcaide B.Almendros P. Eur. J. Org. Chem. 2002, 1595 - 42a 
             
            
Yamada YMA.Yoshikawa N.Sasai H.Shibasaki M. Angew. Chem., Int. Ed. Engl. 1997, 36: 1871 - 42b 
             
            
Gröger H.Vogl EM.Shibasaki M. Chem. Eur. J. 1998, 4: 1137 - 43 
             
            
Trost BM.Ito H. J. Am. Chem. Soc. 2000, 122: 12003 - 44 For mechanistic studies and an improved
            catalyst, see:  
            
Yoshikawa N.Yamada YMA.Das J.Sasai H.Shibasaki M. J. Am. Chem. Soc. 1999, 121: 4168 - 45a 
             
            
Trost BM.Silcoff ER.Ito H. Org. Lett. 2001, 3: 2497 - 45b 
             
            
Trost BM.Shin S.Sclafani JA. J. Am. Chem. Soc. 2005, 127: 8602 - 46 
             
            
Maki K.Motoki R.Fujii K.Kanai M.Kobayashi T.Tamura S.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 17111 - 47a 
             
            
Trost BM.Fettes A.Shireman BT. J. Am. Chem. Soc. 2004, 126: 2660 - 47b 
             
            
Trost BM.Frederiksen MU.Papillon JPN.Harrington PE.Shin S.Shireman BT. J. Am. Chem. Soc. 2005, 127: 3666 - For recent comments about the application of this catalytic aldol reaction to the synthesis of natural products, see:
 - 48a 
             
            
Amans D.Bareille L.Bellosta V.Cossy J. J. Org. Chem. 2009, 74: 7665 - 48b 
             
            
Trost BM.O’Boyle BM.Hund D. J. Am. Chem. Soc. 2009, 131: 15061 - 49 
             
            
Iwata M.Yazaki R.Suzuki Y.Kumagai N.Shibasaki M. J. Am. Chem. Soc. 2009, 131: 18244 - 50a 
             
            
Li H.Da C S.Xiao Y.-H.Li X.Su Y.-N. J. Org. Chem. 2008, 73: 7398 - 50b 
             
            
Kobayashi S.Matsubara R. Chem. Eur. J. 2009, 15: 10694 - 51a 
             
            
Denmark SE.Stavenger RA. J. Am. Chem. Soc. 2000, 122: 8837 - 51b 
             
            
Denmark SE.Fujimori S.Pham SM. J. Org. Chem. 2005, 70: 10823 - 52a 
             
            
Denmark SE.Fan Y. J. Am. Chem. Soc. 2002, 124: 4233 - 52b 
             
            
Denmark SE.Fan Y.Eastgate MD. J. Org. Chem. 2005, 70: 5235 - For a comprehensive review on the use of chiral Lewis bases on stereoselective reactions and further applications on Mukaiyama-type aldol reactions, see:
 - 53a 
             
            
Denmark SE.Beutner GL. Angew. Chem. Int. Ed. 2008, 47: 1560 - 53b 
             
            
Denmark SE.Eklov BM.Yao PJ.Eastgate MD. J. Am. Chem. Soc. 2009, 131: 11770 - 54a 
             
            
Masamune S.Choy W.Petersen JS.Sita LR. Angew. Chem., Int. Ed. Engl. 1985, 24: 1 - 54b 
             
            
Kolodiazhnyi OI. Tetrahedron 2003, 59: 5953 - 55 
             
            
Paterson I.Goodman JM.Isaka M. Tetrahedron Lett. 1989, 30: 7121 - 56 
             
            
Evans DA.Ripin DHB.Halstead DP.Campos KR. J. Am. Chem. Soc. 1999, 121: 6816 - 57 
             
            
Paton RS.Goodman JM. J. Org. Chem. 2008, 73: 1253 - 58a 
             
            
Shotwell JB.Roush WR. Org. Lett. 2004, 6: 3865 - 58b 
             
            
Paterson I.Findlay AD.Florence GJ. Org. Lett. 2006, 8: 2131 - 58c 
             
            
Paterson I.Paquet T. Org. Lett. 2010, 12: 2158 - 59a 
             
            
O’Sullivan PT.Buhr W.Fuhry MAM.Harrison JR.Davies JE.Feeder N.Marshall DR.Burton JW.Holmes AB. J. Am. Chem. Soc. 2004, 126: 2194 - 59b 
             
            
Paterson I.Anderson EA.Dalby SM.Loiseleur O. Org. Lett. 2005, 7: 4125 - 59c 
             
            
Paterson I.Florence GJ.Heimann AC.Mackay AC. Angew. Chem. Int. Ed. 2005, 44: 1130 - 59d 
             
            
Paterson I.Coster MJ.Chen DY.-K.Oballa RM.Wallace DJ.Norcross RD. Org. Biomol. Chem. 2005, 3: 2399 - 59e 
             
            
Paterson I.Ashton K.Britton R.Cecere G.Chouraqui G.Florence GJ.Knust H.Stafford J. Chem. Asian J. 2008, 3: 367 - 59f 
             
            
Paterson I.Gibson LJ.Kan SBJ. Org. Lett. 2010, 12: 5530 - 59g  
            
See also reference 58b.
 - 60a 
             
            
Zhou X.-T.Lu L.Furkert DP.Wells CE.Carter RG. Angew. Chem. Int. Ed. 2006, 45: 7622 - 60b 
             
            
Dunetz JR.Julian LD.Newcom JS.Roush WR. J. Am. Chem. Soc. 2008, 130: 16407 - 61 
             
            
Ehrlich G.Hassfeld J.Eggert U.Kalesse M. Chem. Eur. J. 2008, 14: 2232 - 62 For previous studies, see:  
            
Hassfeld J.Eggert U.Kalesse M. Synthesis 2005, 1183 - 63 
             
            
Trost BM.Urabe H. J. Org. Chem. 1990, 55: 3982 - 64 
             
            
Evans DA.Carter PH.Carreira EM.Charette AB.Prunet JA.Lautens M. J. Am. Chem. Soc. 1999, 121: 7540 - 65 
             
            
Fürstner A.Kattnig E.Lepage O. J. Am. Chem. Soc. 2006, 128: 9194 - 66 
             
            
Pellicena M.Solsona JG.Romea P.Urpí F. Tetrahedron Lett. 2008, 49: 5265 - 68 
             
            
Lorenz M.Bluhm N.Kalesse M. Synthesis 2009, 3061 - 69 Interestingly, lithium and sodium
            enolates from α-(N,N-dibenzylamino) methyl ketones undergo
            aldol reactions delivering 1,4-syn aldols
            with very high diastereoselectivity. See:  
            
Lagu BR.Liotta DC. Tetrahedron Lett. 1994, 35: 4485 - 70 
             
            
Lorente A.Pellicena M.Romea P.Urpí F. Tetrahedron Lett. 2010, 51: 942 - 72 
             
            
Paterson I.Findlay AD.Noti C. Chem. Asian J. 2009, 4: 594 - 73 
             
            
Lorenz M.Kalesse M. Org. Lett. 2008, 10: 4371 - 74 
             
            
Guérinot A.Lepesqueux G.Sablé S.Reymond S.Cossy J. J. Org. Chem. 2010, 75: 5151 - 75a 
             
            
Palomo C.González A.García JM.Landa C.Oiarbide M.Rodríguez S.Linden A. Angew. Chem. Int. Ed. 1998, 37: 180 - 75b 
             
            
Palomo C.Oiarbide M.Aizpurua JM.González A.García JM.Landa C.Odriozola I.Linden A. J. Org. Chem. 1999, 64: 8193 - 75c 
             
            
Palomo C.Oiarbide M.García JM.González A.Pazos R.Odriozola JM.Bañuelos P.Tello M.Linden A. J. Org. Chem. 2004, 69: 4126 - 76a 
             
            
Paterson I.Gibson KR.Oballa RM. Tetrahedron Lett. 1996, 37: 8585 - 76b 
             
            
Evans DA.Côté B.Coleman PJ.Connell BT. J. Am. Chem. Soc. 2003, 125: 10893 - 77 For a recent review, see:  
            
Dias LC.Aguilar AM. Chem. Soc. Rev. 2008, 37: 451 - 78a 
             
            
Paterson I.Tudge M. Tetrahedron 2003, 59: 6833 - 78b See also:  
            
Fettes A.Carreira EM. J. Org. Chem. 2003, 68: 9274 - 79 
             
            
Evans DA.Connell BT. J. Am. Chem. Soc. 2003, 125: 10899 - 80 
             
            
Paterson I.Coster MJ.Chen DY.-K.Gibson KR.Wallace DJ. Org. Biomol. Chem. 2005, 3: 2410 - For remarkable and recent examples in this area, see:
 - 81a 
             
            
Evans DA.Trotter BW.Coleman PJ.Côté B.Dias LC.Rajapakse HA.Tyler AN. Tetrahedron 1999, 55: 8671 - 81b 
             
            
Trieselmann T.Hoffmann RW. Org. Lett. 2000, 2: 1209 - 81c 
             
            
Kozmin S. Org. Lett. 2001, 3: 755 - 81d 
             
            
Paterson I.Collett LA. Tetrahedron 2001, 42: 1187 - 81e 
             
            
Bhattacharjee A.Soltani O.De Brabender JK. Org. Lett. 2002, 4: 481 - 81f 
             
            
Paterson I.Di Francesco ME.Kühn T. Org. Lett. 2003, 5: 599 - 81g 
             
            
Denmark SE.Fujimori S. J. Am. Chem. Soc. 2005, 127: 8971 - 81h 
             
            
Mitton-Fry MJ.Cullen AJ.Sammakia T. Angew. Chem. Int. Ed. 2007, 46: 1066 - 81i 
             
            
Paterson I.Anderson EA.Dalby SM.Lim JH.Loiseleur O.Maltas P.Moessner C. Pure Appl. Chem. 2007, 79: 667 - 81j 
             
            
Guo H.Mortensen MS.O’Doherty GA. Org. Lett. 2008, 10: 3149 - 81k 
             
            
Evans DA.Welch DS.Speed AWH.Moniz GA.Reichelt A.Ho S. J. Am. Chem. Soc. 2009, 131: 3840 - 81l 
             
            
Paterson I.Mühlthau FA.Cordier CJ.Housden MP.Burton PM.Loiseleur O. Org. Lett. 2009, 11: 353 - 81m 
             
            
Li S.Chen Z.Xu Z.Ye T. Chem. Commun. 2010, 46: 4773 - 81n  
            
See also reference 26b
 - 82a 
             
            
Paterson I.Coster MJ.Chen DY.-K.Aceña JL.Bach J.Keown LE.Trieselmann T. Org. Biomol. Chem. 2005, 3: 2420 - 82b  
            
See also reference 26b.
 - 83 
             
            
Dias LC.de Marchi AA.Ferreira MAB.Aguilar AM. J. Org. Chem. 2008, 73: 6299 - 84 
             
            
Dias LC.de Lucca EC.Ferreira MAB.Garcia DC.Tormena CF. Org. Lett. 2010, 12: 5056 - 85 
             
            
Yamaoka Y.Yamamoto H. J. Am. Chem. Soc. 2010, 132: 5354 - For other examples, see:
 - 86a 
             
            
Mulzer J.Berger M. J. Org. Chem. 2004, 69: 891 - 86b 
             
            
Arefolov A.Panek JS. J. Am. Chem. Soc. 2005, 127: 5596 - 86c 
             
            
Dias LC.Aguilar AM.Salles AG.Steil LJ.Roush WR. J. Org. Chem. 2005, 70: 10461 - 86d 
             
            
Kim YJ.Lee D. Org. Lett. 2006, 8: 5219 - 86e 
             
            
Li P.Li J.Arikan F.Ahlbrecht W.Dieckmann M.Menche D. J. Org. Chem. 2010, 75: 2429 - 87a 
             
            
Dias LC.Baú RZ.de Sousa MA.Zukerman-Schpector J. Org. Lett. 2002, 4: 4325 - 87b 
             
            
Dias LC.Aguilar AM. Org. Lett. 2006, 8: 4629 - 88 
             
            
Dias LC.Pinheiro SM.de Oliveira VM.Ferreira MAB.Tormena CF.Aguilar AM.Zukerman-Schpector J.Tiekink ERT. Tetrahedron 2009, 65: 8714 - 89 
             
            
Roush WR.Bannister TD.Wendt MD.Jablonowski JA.Scheidt KA. J. Org. Chem. 2002, 67: 4275 - 90 
             
            
Scheidt KA.Bannister TD.Tasaka A.Wendt MD.Savall BM.Fegley GJ.Roush WR. J. Am. Chem. Soc. 2002, 124: 6981 - 91 
             
            
Crimmins MT.Katz JD.Washburn DG.Allwein SP.McAtee LF. J. Am. Chem. Soc. 2002, 124: 5661 - 93a 
             
            
Chakraborty TK.Thippeswamy D.Suresh VR.Jayaprakash S. Chem. Lett. 1997, 563 - 93b 
             
            
Ishiyama H.Takemura T.Tsuda M.Kobayashi J. J. Chem. Soc., Perkin Trans. 1 1999, 1163 - 93c 
             
            
Cid MB.Pattenden G. Tetrahedron Lett. 2000, 41: 7373 - 93d 
             
            
Fürstner A.Bouchez LC.Morency L.Funel J.-A.Liepins V.Porée F.-H.Gilmour R.Laurich D.Beaufils F.Tamiya M. Chem. Eur. J. 2009, 15: 3983 - 94 
             
            
Lu L.Zhang W.Carter RG. J. Am. Chem. Soc. 2008, 130: 7253 - 95 
             
            
Zhang W.Carter RG. Org. Lett. 2005, 7: 4209 - 96 For another example, see:  
            
Chakraborty TK.Suresh VR. Tetrahedron Lett. 1998, 39: 7775 - 97a 
             
            
Liesener FP.Jannsen U.Kalesse M. Synthesis 2006, 2590 - 97b 
             
            
Deng L.Ma Z.Zhao G. Synlett 2008, 728 - 98 
             
            
Paterson I.Florence GJ.Gerlach K.Scott JP.Sereinig N. J. Am. Chem. Soc. 2001, 123: 9535 - For an insightful account on the total syntheses of discodermolide, see:
 - 99a 
             
            
Paterson I.Florence GJ. Eur. J. Org. Chem. 2003, 2193 - 99b 
             
            
Florence GJ.Gardner NM.Paterson I. Nat. Prod. Rep. 2008, 25: 342 - 100 
             
            
Paterson I.Delgado O.Florence GJ.Lyothier I.Scott JP.Sereinig N. Org. Lett. 2003, 5: 35 
References
The term acetate aldol reaction refers to any aldol transformation involving unsubstituted enolates, which encompasses the reactions of acetate esters, other carboxylic derivatives, and methyl ketones.
8The term metal enolate is used in a broad sense. It refers to enolates from boron, silicon, alkaline, titanium, tin, and other elements that participate in aldol reactions proceeding through cyclic transition states
10Stereoselective aldol reactions involving multifunctional catalysts often proceed through highly organized transition states that have more complex molecular arrangements
15It is worth recalling that the N-propanoyl counterpart was absolutely successful under the same experimental conditions and provided the Evans-syn diastereomer with a dr of 99.4:0.6. See reference 5a.
19Oxazolidinethiones turned out to be slightly less stereo-selective than the corresponding thiazolidinethiones for α,β-unsaturated aldehydes.
23Boron enolates afforded lower diastereomeric ratios.
67Similar results are obtained with other aliphatic α,β-unsaturated and aromatic aldehydes.
71In support of this theoretical model, it has been observed that the more sterically bulky the R group (Me to i-Pr), the better the diastereoselectivity for aliphatic as well as α,β-unsat-urated and aromatic aldehydes.
92See reference 81l and 82a.