Abstract
Although the direct anodic fluorination of 3-phenyl-2H -1,4-benzoxazine was not very effective,
the fluorodesulfurization of 3-aryl-2-(phenylsulfanyl)-2H -1,4-benzoxazines using various anodically
generated halogen mediators in the presence of triethylamine
tris(hydrogen fluoride) by an ex-cell method efficiently and selectively
provided the corresponding monofluorinated products. In sharp contrast,
in-cell halogen mediators did not work well. Furthermore, the selective
fluorodesulfurization of pyrido[3,2-b ][1,4]oxazine
derivatives was also successfully carried out using the same ex-cell
method to provide the corresponding monofluorinated products in
moderate yields.
Key words
halogenation - fluorine - heterocycles - electron
transfer - oxidations
References
1a
Tricarico D.
Mele A.
Camerino GM.
Laghezza A.
Carbonara G.
Fracchiolla G.
Tortorella P.
Loiodice F.
Camerino DC.
Mol. Pharmacol.
2008,
74:
50
1b
Tricarico D.
Barbieri M.
Laghezza A.
Tortorella P.
Loiodic F.
Camerino DC.
Br. J. Pharmacol.
2003,
139:
255
1c
Matsumoto Y.
Tsuzuki R.
Matsuhisa A.
Takayama K.
Yoden T.
Uchida W.
Asano M.
Fujita S.
Yanagisawa I.
Fujikura T.
Chem. Pharm. Bull.
1996,
44:
103
1d
Kajino M.
Shibouta Y.
Nishikawa K.
Meguro K.
Chem. Pharm. Bull.
1991,
39:
2896
1e
Kuroita T.
Sakamori M.
Kawakita T.
Chem.
Pharm. Bull.
1996,
44:
756
1f
Matsuoka H.
Ohi N.
Mihara M.
Suzuki H.
Miyamoto K.
Maruyama N.
Tsuji K.
Kato N.
Akimoto T.
Takeda Y.
Yano K.
Kuroki T.
J.
Med. Chem.
1997,
40:
105
1g
Savelon L.
Bizot-Espiard JG.
Gaignard DH.
Pfeiffer B.
Renard P.
Viaud MC.
Guillaumet G.
Bioorg. Med. Chem.
1998,
6:
133
2a
Bioorganic and Medicinal Chemistry of Fluorine
Bégué JP.
Bonnet-Delpon D.
Wiley;
Hoboken
NJ:
2008.
2b
Organofluorine
Compounds
Hiyama T.
Springer;
Berlin:
2000.
2c
Biomedicinal
Aspects of Fluorine Chemistry
Filler R.
Kobayashi Y.
Kondansha and Elsevier
Biomedical;
Tokyo:
1982.
3a
Fuchigami T.
Shimojo M.
Konno A.
Nakagawa K.
J.
Org. Chem.
1990,
55:
6074
3b
Fuchigami T.
Narizuka S.
Konno A.
J.
Org. Chem.
1992,
57:
3755
3c
Konno A.
Naito W.
Fuchigami T.
Tetrahedron
Lett.
1992,
33:
7017
3d
Narizuka S.
Fuchigami T.
J. Org. Chem.
1993,
58:
4200
3e
Fuchigami T.
Konno A.
Nakagawa K.
Shimogo M.
J. Org. Chem.
1994,
59:
5937
3f
Erian AW.
Konno A.
Fuchigami T.
J. Org. Chem.
1995,
60:
7654
3g
Higashiya S.
Narizuka S.
Konno A.
Maeda T.
Momomota K.
Fuchigami T.
J. Org. Chem.
1999,
64:
133
3h
Ishii H.
Yamada N.
Fuchigami T.
Chem.
Commun.
2000,
1617
3i
Shaaban MR.
Ishii H.
Fuchigami T.
J. Org. Chem.
2000,
65:
8685
3j
Shaaban MR.
Ishii H.
Fuchigami T.
J. Org. Chem.
2001,
66:
5633
4a
Shaaban MR.
Fuchigami T.
Synlett
2001,
1644
4b
Iwayasu N.
Shaaban MR.
Fuchigami T.
Heterocycles
2002,
57:
623
5
Dawood KM.
Ishii H.
Fuchigami T.
J.
Org. Chem.
2001,
66:
7030
6
Dawood KM.
Fuchigami T.
J. Org. Chem.
2001,
66:
7691
7
Shaaban MR.
Inagi S.
Fuchigami T.
Electrochim.
Acta
2009,
54:
2635
8
Olah GA.
Welch JT.
Vankar YD.
Nojima M.
Kerekes I.
Olah JA.
J.
Org. Chem.
1979,
44:
3872
9
López JC.
Albert PB.
Uriel C.
Gómez AM.
Eur.
J. Org. Chem.
2008,
5037
10
Yin B.
Inagi S.
Fuchigami T.
Synlett
2010,
2146
11
Banzatti C.
Heidemepergher F.
Melloni P.
J.
Heterocycl. Chem.
1983,
20:
259
12a
Padmanabhan S.
Ogawa T.
Suzuki H.
Bull. Chem. Soc. Jpn.
1989,
62:
1358
12b
Groebel W.
Chem.
Ber.
1960,
93:
896
13a
Hou YK.
Fuchigami T.
J.
Electrochem. Soc.
2000,
147:
4567
13b
Inagi S.
Sawamura T.
Fuchigami T.
Electrochem.
Commun.
2008,
10:
1158
14
Yoshiyama T.
Fuchigami T.
Chem. Lett.
1992,
1995
15a
Sondej SC.
Katzenellenbogen JA.
J. Org. Chem.
1986,
51:
3508
15b
Kuroboshi M.
Hiyama T.
Synlett
1999,
909
15c
Motherwell WB.
Wilkinson JA.
Synlett
1999,
191
15d
Chambers RD.
Sandford G.
Atherton M.
J. Chem. Soc., Chem. Commun.
1995,
177
16
Ringom R.
Benneche T.
Acta Chem. Scand.
1999,
53:
41
17 DFT B3LYP 6-31G(d) using a Gaussian
03 program; Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Bakken V.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision
C.01
Gaussian Inc.;
Wallingford (CT):
2004.
18
Fuchigami T.
Sano M.
J. Electroanal. Chem.
1996,
414:
81
19
Fuchigami T.
Mitomo K.
Ishii H.
Konno A.
J. Electroanal. Chem.
2001,
507:
30
20
Miller LL.
Kujawa EP.
Campbell CB.
J. Am. Chem. Soc.
1970,
92:
2821
21 When 0.5 equivalent of molecular iodine
were used under the ex-cell method conditions, the corresponding monofluorinated
product 4a was obtained in only 45% yield.