References and Notes
1a
Zhu J.
Bienayme H.
Multicomponent Reactions
Wiley-VCH;
Weinheim:
2005.
1b
Dömling A.
Chem. Rev.
2006,
106:
17
1c
Dömling A.
Ugi I.
Angew. Chem.
Int. Ed.
2000,
39:
3168
2a
Tietze LF.
Brasche G.
Gericke GM.
Domino Reactions
in Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
2b
Tietze LF.
Beifuss U.
Angew. Chem.
Int. Ed.
1993,
32:
131
2c
Tietze LF.
Chem. Rev.
1996,
96:
115
3a
Arya A.
Chou DTH.
Baek MG.
Angew. Chem. Int. Ed.
2001,
40:
339
3b
Burke MD.
Berger EM.
Schreiber SL.
Science
2003,
302:
613
3c
Cox B.
Denyer JC.
Binnie A.
Donnelly MC.
Evans B.
Green DVS.
Lewis JA.
Mander TH.
Merritt AT.
Valler MJ.
Watson SP.
Prog. Med. Chem.
2000,
37:
83
3d
Schreiber SL.
Science
2000,
287:
1964
3e
Schreiber SL.
Burke MD.
Angew.
Chem. Int. Ed.
2004,
43:
46
4a
Yan B.
Liu Y.
Org.
Lett.
2007,
9:
4323
4b
Kel’in AV.
Sromek AW.
Gevorgyan V.
J. Am. Chem. Soc.
2001,
123:
2074
4c
Kim JT.
Gevorgyan V.
Org. Lett.
2002,
4:
4697
4d
Kim JT.
Butt J.
Gevorgyan V.
J.
Org. Chem.
2004,
69:
5638
4e
Kim JT.
Gevorgyan V.
J. Org. Chem.
2005,
70:
2054
4f
Seregin IV.
Gevorgyan V.
J. Am. Chem.
Soc.
2006,
128:
12050
4g
Smith CR.
Bunnelle EM.
Rhodes AJ.
Sarpong R.
Org.
Lett.
2007,
9:
1169
4h
Liu YH.
Song ZQ.
Yan B.
Org.
Lett.
2007,
9:
409
4i
Bai Y.
Zeng J.
Ma J.
Gorityala BK.
Liu XW.
J.
Comb. Chem.
2010,
12:
696
5
Chernyak N.
Gevorgyan V.
Angew. Chem. Int. Ed.
2010,
49:
2743
6a
Xiao F.
Chen Y.
Liu Y.
Wang J.
Tetrahedron
2008,
64:
2755
6b
Zhang Y.
Li P.
Wang L.
J.
Heterocycl. Chem.
2011,
48:
153
6c
Sakai N.
Uchida N.
Konakahar T.
Synlett
2008,
1515
7
Li H.
Liu J.
Yan B.
Li Y.
Tetrahedron
Lett.
2009,
50:
2353
8a
Martin R.
Fürstner A.
Angew.
Chem. Int. Ed.
2004,
43:
3955
8b
Sapountzis I.
Lin W.
Kofink CC.
Despotopoulou C.
Knochel P.
Angew.
Chem. Int. Ed.
2005,
44:
1654
8c
Komeyama K.
Morimoto T.
Takaki K.
Angew.
Chem. Int. Ed.
2006,
45:
2938
8d
Plierker B.
Angew.
Chem. Int. Ed.
2006,
45:
6053
8e
Egami H.
Katsuki T.
J. Am. Chem. Soc.
2007,
129:
8940
8f
Cahiez G.
Moyeux A.
Buendia J.
Duplais C.
J. Am. Chem. Soc.
2007,
129:
13788
8g
Hatakeyama T.
Nakamura M.
J. Am. Chem. Soc.
2007,
129:
9844
8h
Gurinot A.
Reymond S.
Cossy J.
Angew.
Chem. Int. Ed.
2007,
46:
6521
8i
Li Z.
Cao L.
Li CJ.
Angew.
Chem. Int. Ed.
2007,
46:
6505
8j
Li Z.
Yu R.
Li H.
Angew.
Chem. Int. Ed.
2008,
47:
7497
8k
Volla CMR.
Vogel P.
Angew. Chem.
Int. Ed.
2008,
47:
1305
8l
Carril M.
Correa A.
Bolm C.
Angew.
Chem. Int. Ed.
2008,
47:
4862
8m
Egami H.
Matsumoto K.
Oguma T.
Kunisu T.
Katsuki T.
J.
Am. Chem. Soc.
2010,
132:
13633
9
Chernyak D.
Chernyak N.
Gevorgyan V.
Adv.
Synth. Catal.
2010,
352:
961
10
Patil SS.
Patil SV.
Bobade VD.
Synlett
2011,
1157
11
Kulkarni A.
Török B.
Green Chem.
2010,
12:
875
12
Martínez R.
Ramón DJ.
Yus M.
J.
Org. Chem.
2008,
73:
9778
13
Abbiati G.
Arcadi A.
Marinelli F.
Rossi E.
Verdecchia M.
Synlett
2006,
3218
14
Leardini R.
Nanni D.
Tundo A.
Zanardi G.
Ruggieri F.
J. Org.
Chem.
1992,
57:
1842
15
Kobayashi K.
Yoneda K.
Miyamoto K.
Morikawa O.
Konishi H.
Tetrahedron
2004,
60:
11639
16
General Procedure
for the Synthesis of Aminoindolizine Derivatives
To
a solution of TBAOH (0.1 mmol) in DMSO (5 mL), pyridine-2-carboxaldehyde
(1.0 mmol), phenyl acetylene (1.2 mmol), morpholine (1.2 mmol),
and Fe(acac)3 (0.05 mmol) were added successively. The
resulting mixture was stirred at r.t. until the reaction was complete
as indicated by TLC. The mixture was then diluted with EtOAc (5
mL), washed with H2O (2 × 5
mL), and the aqueous phase was extracted with EtOAc (3 × 5
mL). The combined organic phases were washed with sat. aq NaCl,
dried over anhyd Na2SO4, filtered, and concentrated
under vacuum. The residue was purified by flash chromatography on
Al2O3 to afford the target product as a yellow
oil.
4
-
(Methoxyphenyl)-1-(piperidin-1-yl) indolizine
4a
(Table 2,
Product 4b)
Pale yellow liquid. ¹H
NMR (300 MHz, C6D6): δ = 1.40-1.48
(m, 2 H), 1.66-1.74 (m, 4 H), 3.01 (dd, J = 5.4
Hz, 4 H), 3.33 (s, 3 H), 6.04-6.09 (m, 1 H), 6.35 (dd, J = 9.0, 6.3
Hz, 1 H), 6.76 (s, 1 H), 6.78-6.83 (m, 2 H), 7.27-7.32
(m, 2 H), 7.58 (d, J = 9.3
Hz, 1 H), 7.91 (d, J = 7.5
Hz, 1 H). ¹³C NMR (75 MHz, C6D6): δ = 24.8,
27.0, 54.8, 55.7, 106.0, 110.8, 114.0, 114.6, 118.4, 121.6, 122.5,
125.3, 125.6, 129.6, 131.7, 159.0. IR (neat): 2933, 1522, 1245,
1034, 835, 738 cm-¹.
17
General Procedure
for the Preparation of Quinoline Derivatives
A mixture
of aldehyde (1 mmol) and aniline (1.4 mmol) was dissolved in DMSO
(10 mL) and heated at 60 ˚C for 2 h. It was cooled
to r.t., TBAOH (10 mol%), phenylacetylene (1.2 mmol), and
Fe(acac)3 were added, and the mixture stirred at r.t.
overnight. The reaction mixture was poured into H2O, and
extracted with EtOAc (or CH2Cl2). The organic
layer was washed with H2O and dried over anhyd Na2SO4.
The solvent was removed in vacuo. The product was purified by column
chromatography on silica gel eluting with EtOAc-hexane
(10:90).
4-(4-Methoxyphenyl)-2-(naphthalen-2-yl)quinoline (Table
3, Entry 5)
Pale yellow solid, mp 265-269 ˚C
(lit.¹¹ 268-270 ˚C). ¹H NMR (300 MHz, CDCl3): δ = 3.93
(s, 3 H), 7.10 (d, J = 8.4 Hz,
2 H), 7.26 (s, 1 H), 7.54 (m, 5 H), 7.75 (t, J = 8.1
Hz, 1 H), 7.96 (m, 4 H), 8.28 (d, J = 8.1
Hz, 1 H), 8.41 (d, J = 9
Hz, 1 H), 8.64 (s, 1 H). ¹³C NMR (75
MHz, CDCl3): δ = 55.4. 114.0, 119.4,
125.0, 125.7, 126.6, 127.1, 127.7, 128.5, 128.8, 129.5, 130.0, 130.8,
131.3, 133.4, 136.2, 147.6, 149.8, 156.6, 164.2.