Synlett 2011(16): 2299-2306  
DOI: 10.1055/s-0030-1260307
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

The Carbenoid Dihalotriangulane Rearrangement: A Mechanistic Mystery

Nikolay Zefirov, Tamara S. Kuznetsova*
Department of Chemistry, Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
e-Mail: zefirov@org.chem.msu.ru; e-Mail: kuzn@org.chem.msu.ru;
Weitere Informationen

Publikationsverlauf

Received 4 February 2011
Publikationsdatum:
13. September 2011 (online)

Abstract

This account focuses on the unprecedented carbenoid ­rearrangement of dihalotriangulanes promoted by treatment with methyllithium. This rearrangement reaction proceeds via a wide variety of intermediates, including carbenoids, carbenes, cations, and organolithium species as well as different halides. Mutual interactions between these intermediates lead to a variety of unusual rearrangement products. The scope and limitations of the unusual dihalotriangulane rearrangement are outlined and some surprising mechanistic features of the reaction are discussed.

1 Introduction

2 First Mechanistic Step: Formation of Carbenoids

3 Ensuing Mechanistic Steps: Transformations of Carbenoids

3.1 Conversions of Carbenoids into Carbenes

3.2 Skeletal (Carbocation-like) Rearrangements of Carbenoids

3.3 Further Transformations of Rearranged Carbenoids

4 Involvement of Intermediate Cations in Other Electrophilic Transformations

5 Final Mechanistic Steps

5.1 Halogenophilic Transformations of Intermediate Organolithiums

5.2 Formation of ‘Dimeric’ Structures

5.3 Transformations of Fluoro-Containing Substrates into ­Methylated Products

5.4 Pathway Involving the Substitution of Lithium by Hydrogen

6 Conclusion

    References

  • 1 Zefirov NS. Kozhushkov SI. Kuznetsova TS. Kokoreva OV. Lukin KA. Ugrak BI. Tratch SS. J. Am. Chem. Soc.  1990,  112:  7702 ; errata J. Am. Chem. Soc. 1991, 113, 9901
  • For reviews, see:
  • 2a Lukin KA. Zefirov NS. Rappoport Z. Wiley; Chichester (UK): 1995.  p.861-885  
  • 2b Zefirov NS. Kuznetsova TS. Zefirov AN. Izv. Akad. Nauk, Ser. Khim.  1995,  1613 ; Russ. Chem. Bull. 1995, 44, 1543
  • 2c de Meijere A. Kozhushkov SI. Chem. Rev.  2000,  100:  93 
  • 2d de Meijere A. Kozhushkov SI. Chem. Rev.  2006,  106:  4926 
  • 3a Lukin KA. Kozhushkov SI. Andrievsky AA. Ugrak BI. Zefirov NS. J. Org. Chem.  1991,  56:  6176 
  • 3b Zefirov NS. Kozhushkov SI. Ugrak BI. Lukin KA. Kokoreva OV. Yufit DS. Struchkov YuT. Zöllner S. Boese R. de Meijere A. J. Org. Chem.  1992,  57:  701 
  • 3c Lukin KA. Masunova AYu. Ugrak BI. Zefirov NS. Tetrahedron  1991,  47:  5769 
  • 3d Lukin KA. Kozhushkov SI. Andrievsky AA. Ugrak BI. Zefirov NS. Mendeleev Commun.  1992,  51 
  • 3e de Meijere A. Kozhushkov SI. Spaeth T. Zefirov NS.
    J. Org. Chem.  1993,  58:  502 
  • 3f de Meijere A. Kozhushkov SI. Zefirov NS. Synthesis  1993,  681 
  • 3g Zefirov NS. Kuznetsova TS. Eremenko OV. Kokoreva OV. Mendeleev Commun.  1993,  91 
  • 3h Kuznetsova TS. Eremenko OV. Kokoreva OV. Zatonsky GV. Zefirov NS. Mendeleev Commun.  1994,  172 
  • 3i Zefirov NS. Kuznetsova TS. Eremenko OV. Kokoreva OV. Zatonsky GV. Ugrak BI. J. Org. Chem.  1994,  59:  4087 
  • 3j de Meijere A. Seebach M. Zöllner S. Kozhushkov SI. Belov VN. Boese R. Haumann T. Benet-Buchholz J. Yufit DS. Howard JA. Chem. Eur. J.  2001,  7:  4021 
  • 4a Doering WE. LaFlamme PM. Tetrahedron  1958,  2:  75 
  • 4b Sydnes IK. Chem. Rev.  2003,  103:  1133 
  • 4c Kostikov RR. Molchanov AP. Hopf H. Top. Curr. Chem.  1990,  155:  41 
  • 5 Lukin KA. Zefirov NS. Yufit DS. Struchkov YT. Tetrahedron  1992,  48:  9977 
  • Diiodides of type 4c may be also obtained from either diiodotriangulanes 1c or, more instructively, from dibromides 1b upon the addition of 1-3 moles of dry LiI; it is interesting to note that a large excess of LiI deactivates MeLi, see:
  • 6a Talalaeva T. Rodionov A. Kocheshkov KA. Dokl. Akad. Nauk SSSR  1961,  140:  847 ; Chem. Abstr. 1962, 56, 5989f
  • 6b Novak DP. Brown TL. J. Am. Chem. Soc.  1972,  94:  3793 
  • See also:
  • 6c Leacachey B. Oulyadi H. Lameiras P. Harrison-Marchand A. Gerard H. Maddaluno J. J. Org. Chem.  2010,  75:  5976 
  • 7a Kobrich G. Akhtar A. Ansan F. Breckoff WE. Buttner H. Drischel W. Fischer RH. Flory K. Frohlich H. Goyert W. Heinemann H. Hornke I. Merkle HR. Trapp H. Zundorf W. Angew. Chem. Int. Ed. Engl.  1967,  6:  41 
  • 7b Taylor KG. Chaney J. J. Am. Chem. Soc.  1976,  98:  4158 
  • 7c Gawronska KJ. Gawronski HM. Walborsky HM. J. Org. Chem.  1991,  56:  2193 
  • 7d Fedorinski M. Chem. Rev.  2003,  103:  1099 ; and in particular p 1118
  • 7e Schleyer PVR. Clark T. Kos AJ. Spitznagel GW. Rohde C. Arad D. Houk KN. Rondan NG. J. Am. Chem. Soc.  1984,  106:  6467 
  • 8a Averina EB. Kuznetsova TS. Zefirov AN. Koposov AE. Grishin YuK. Zefirov NS. Mendeleev Commun.  1999,  101 
  • 8b Sedenkova KN. Averina EB. Gris hin YK. Kuznetsova TS. Zefirov NS. Zh. Org. Khim.  2008,  44:  962 ; Russ. J. Org. Chem. (Engl. Transl.) 2008, 44, 950
  • 9a Averina EB. Sedenkova KN. Grishin YK. Kuznetsova TS. Zefirov NS. ARKIVOC  2008,  (iv):  71 
  • 9b Averina EB. Karimov RR. Sedenkova KN. Grishin YK. Kuznetsova TS. Zefirov NS. Tetrahedron  2006,  62:  8814 
  • 9c Averina EB. Kuznetsova TS. Lysov AE. Potekhin KA. Zefirov NS. Dokl. Acad. Nauk  2000,  375:  481 ; Dokl. Chem. (Engl. Transl.) 2000, 375, 257
  • We were kindly informed by Professor P. Vollhardt that one example of such a rearrangement had been presented in a dissertation by S. Zöllner; however, this was discussed in terms of a usual solvolytic carbocationic process:
  • 9d Zöllner S. Dissertation   University of Hamburg (Germany): 1991. 
  • 10a Averina EB. Sedenkova KN. Borisov IS. Grishin YK. Kuznetsova TS. Zefirov NS. Tetrahedron  2009,  65:  5693 
  • 10b Sedenkova KN. Averina EB. Grishin YK. Kuznetsova TS. Zefirov NS. Tetrahedron  2010,  66:  8089 
  • 10c Sedenkova KN. Averina EB. Grishin YK. Rybakov VB. Kuznetsova TS. Zefirov NS. Eur. J. Org. Chem.  2010,  4145 
  • 13 Ando K. J. Org. Chem.  2006,  71:  1837 
  • 14 Ward HR. Lawler RG. Loken HY. J. Am. Chem. Soc.  1968,  90:  7359 
  • 15a Zefirov NS. Makhon’kov DI. Chem. Rev.  1982,  82:  615 
  • 15b Grinblat J. Ben-Zion M. Hoz S. J. Am. Chem. Soc.  2001,  123:  10738 
  • 15c Matveeva ED. Podrugina TA. Zefirov NS. Mendeleev Commun.  1998,  21 
  • 16a Glukhovtsev MN. Pross A. Schlegel B. Bach RD. Radom L. J. Am. Chem. Soc.  1996,  118:  11258 
  • 16b Glukhovtsev MN. Pross A. Radom L. J. Am. Chem. Soc.  1996,  118:  6273 
  • 16c Kobychev VB. Vitkovskaya NM. Abramov AV. Timokhin BV. Zh. Obshch. Khim.  1999,  69:  820 ; Russ. J. Gen. Chem. (Engl. Transl.) 1999, 69, 788
  • 17a Bailey WF. Gagnier RP. Patricia JJ. J. Org. Chem.  1984,  49:  2098 
  • 17b Eccles W. Jasinski M. Kaszynski P. Zienkiewicz K. Stulgies B. Jankowiak A. J. Org. Chem.  2008,  73:  5732 
  • 18 Müller C. Stier F. Weyerstahl P. Chem. Ber.  1977,  110:  124 
  • 19a Azizogly A. Demirkol O. Kilic T. Yildiz YK. Tetrahedron  2007,  63:  2409 
  • 19b Ozen R. Balci M. Tetrahedron  2002,  58:  3079 
  • 19c Christl M. Braun M. Müller G. Angew. Chem. Int. Ed. Engl.  1992,  31:  473 ; Angew. Chem. 1992, 104, 471
  • For example, ”it was and still is indeed remarkable that ... carbenoids (anions!) are electrophilic enough to react with rather weakly nucleophilic bonds”, see:
  • 20a Boche G. Lohrenz JCW. Chem. Rev.  2001,  101:  697 
  • 20b Taylor KG. Chaney J. Deck JC. J. Am. Chem. Soc.  1976,  98:  4163 
  • 20c Topolski M. Duraisami M. Rachon J. Gawronski J. Goedken V. Walborsky HM. J. Org. Chem.  1993,  58:  546 
  • 21 Skattebol L. Tetrahedron  1967,  23:  1107 
  • 23a Appelquist DE. Johnston MR. Fisher F. J. Am. Chem. Soc.  1970,  92:  4614 
  • 23b Gajewski JJ. Chang MJ. J. Org. Chem.  1978,  43:  765 
  • 24a Jonson CS. Weiner MA. Waugh JS. Seyfert D.
    J. Am. Chem. Soc.  1961,  83:  1306 
  • 24b West P. Purmort JI. McKinley SV. J. Am. Chem. Soc.  1968,  90:  797 
  • 26a Borer M. Neuenschwander M. Helv. Chim. Acta  1997,  80:  2486 
  • 26b Loosli T. Borer M. Kulakovska I. Minger A. Neuenschwander M. Helv. Chim. Acta  1995,  78:  1144 
  • 27a Kitatani K. Hiyama T. Nozaki H. J. Am. Chem. Soc.  1975,  97:  949 
  • 27b Holm KH. Skattebol L. J. Am. Chem. Soc.  1977,  99:  5480 
  • 28a Rachon J. Goedken V. Walborsky HM. J. Am. Chem. Soc.  1986,  108:  7435 
  • 28b Pearlman BA. Putt SR. Fleming JA. J. Org. Chem.  2006,  71:  5646 
  • 29 Warner PM. Chang S.-C. Koszewski NJ. Tetrahedron Lett.  1985,  26:  5371 
11

Only one example of the unusual reactivity of gem-bromofluoropolyspirocyclopropanes is known. This involves the treatment of highly spirocyclopropanated fluorobromo[15]triangulane with butyllithium at -10 to
-5 ˚C which led to a remarkable skeletal rearrangement accompanied by two consecutive cyclopropylcarbene to cyclobutene ring enlargements and the incorporation of two n-butyl groups, resulting in a bicyclo[2.2.0]hexane derivative as the main product; this is described on p 4970 of the following: See ref. 2d.

12

This is remarkable because many publications exist concerning reactions of dibromides of type 1 with alkyllithium where the rearrangement products are not formed.

22

For clarity, we use here the pure carbocationic stepwise presentation, thus ignoring the problem of the concerted nature of mechanistic steps.

25

For simplicity, we use here only one resonance structure, 29; obviously this process may be also equivalently treated as electrophilic substitution in the aromatic ring.