Synlett 2011(17): 2517-2520  
DOI: 10.1055/s-0030-1260319
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Rhodium(I)-Catalyzed 1,4-Addition of Arylboronic Acids to Acrylic Acid in Water: One-Step Preparation of 3-Arylpropionic Acids

Nicolas R. Vautravers, Bernhard Breit*
Institut für Organische Chemie und Biochemie, Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
Fax: +49(761)2038715; e-Mail: bernhard.breit@chemie.uni-freiburg.de;
Further Information

Publication History

Received 12 July 2011
Publication Date:
19 September 2011 (online)

Abstract

A practical method for the one-step preparation of 3-arylpropionic acids through rhodium-catalyzed 1,4-addition of arylboronic acids to acrylic acid is reported. The method is applicable to a broad scope of aryl boronic acids and displays a wide functional group tolerance operating in water as the optimal reaction medium.

    References and Notes

  • 1a Fagnou K. Lautens M. Chem. Rev.  2003,  103:  169 
  • 1b Hayashi K. Yamasaki K. Chem. Rev.  2003,  103:  2829 
  • 1c Evans PA. Modern Rhodium-Catalyzed Organic Reactions   Wiley-VCH; Weinheim: 2005. 
  • 1d Skucas E. Ngai M.-Y. Komanduri V. Krische MJ. Acc. Chem. Res.  2007,  40:  1394 
  • 1e Miura T. Murakami M. Chem. Commun.  2007,  217 
  • 1f Lewis JC. Bergman RG. Ellman JA. Acc. Chem. Res.  2008,  41:  1013 
  • 1g Colby DA. Bergman RG. Ellman JA. Chem. Rev.  2010,  110:  624 
  • 1h Edwards HJ. Hargrave JD. Penrose SD. Frost CG. Chem. Soc. Rev.  2010,  39:  2093 
  • 2a Sakai M. Hayashi M. Miyaura N. Organometallics  1997,  16:  4229 
  • 2b Takaya Y. Ogasawara M. Hayashi T. Sakai M. Miyaura N. J. Am. Chem. Soc.  1998,  120:  5579 
  • 2c Ghosh AK. Bilcer G. Schiltz G. Synthesis  2001,  2203 
  • 2d List B. Castello C. Synlett  2001,  1687 
  • 2e Reetz MT. Moulin D. Gosberg A. Org. Lett.  2001,  3:  4083 
  • 3a Sakuma S. Sakai M. Itooka N. Miyaura N. J. Org. Chem.  2000,  65:  5951 
  • 3b Chapman CJ. Frost CG. Adv. Synth. Catal.  2003,  345:  353 
  • 4 Paquin J.-F. Defieber C. Stephenson CRJ. Carreira EM. J. Am. Chem. Soc.  2005,  127:  10850 
  • 5a Senda T. Ogasawara M. Hayashi T. J. Org. Chem.  2001,  66:  6852 
  • 5b Sakuma S. Miyaura N. J. Org. Chem.  2001,  66:  8944 
  • 6 Hayashi T. Senda T. Takaya M. Ogasawara M. J. Am. Chem. Soc.  1999,  121:  11591 
  • 7 Mauleon P. Carretero JC. Org. Lett.  2004,  6:  3195 
  • 8 Tsui GC. Menard F. Lautens M. Org. Lett.  2010,  12:  2456 
  • 9 Tsui GC. Lautens M. Angew. Chem. Int. Ed.  2010,  49:  8939 
  • 10 Sasaki K. Hayashi T. Angew. Chem. Int. Ed.  2010,  49:  8145 
  • 11a Oguma K. Miura M. Satoh T. Nomura M. J. Am. Chem. Soc.  2000,  122:  10464 
  • 11b Lautens M. Dockendorff C. Fagnou K. Malicki A. Org. Lett.  2002,  4:  1311 
  • 11c Murakami M. Igawa H. Chem. Commun.  2002,  390 
  • 11d Menard F. Lautens M. Angew. Chem. Int. Ed.  2008,  47:  2085 
  • 11e Panteleev J. Menard F. Lautens M. Adv. Synth. Catal.  2008,  350:  2893 
  • 12a Lautens M. Roy A. Fukuoka K. Fagnou K. Martin-Matute B. J. Am. Chem. Soc.  2001,  123:  5358 
  • 12b Pattison G. Piraux G. Lam HW. J. Am. Chem. Soc.  2010,  132:  14373 
  • 13a Amengual R. Michelet V. Genet J.-P. Tetrahedron Lett.  2002,  43:  5905 
  • 13b Lautens M. Yoshida M. Org. Lett.  2002,  4:  123 
  • 13c Lautens M. Yoshida M. J. Org. Chem.  2003,  68:  762 
  • 13d Genin E. Michelet V. Genet JP. J. Organomet. Chem.  2004,  689:  3820 
  • For non-rhodium-catalyzed use of α,β-unsaturated carboxylic acids as Michael acceptors, see:
  • 14a Cooke MP. J. Org. Chem.  1987,  52:  5729 
  • 14b Aurell MJ. Domingo LR. Mestres R. Munoz E. Zaragoza R J. Tetrahedron  1999,  55:  815 
  • 14c Li Z. Shi Z. He C. J. Organomet. Chem.  2005,  690:  5049 
  • 15 Yan L. Huo P. Doherty G. Toth L. Hale JJ. Mills SG. Hajdu R. Keohane CA. Rosenbach MJ. Milligan JA. Shei GJ. Chrebet G. Bergstrom J. Card D. Quackenbush E. Wickham A. Mandala SM. Bioorg. Med. Chem. Lett.  2006,  14:  3679 
  • 16 α- and β-Substituted α,β-unsaturated carboxylic acids did not react under the conditions developed herein. Neither did alkylboronic acids (methyl and butylboronic acids) nor alkenylboronic acids (potassium vinyltrifluoroborate and vinylboronic acid pinacol ester)
  • 19a Zhang X. De Los Angeles JE. He M.-Y. Dalton JT. Shams G. Lei L. Patil PN. Feller DR. Miller DD. Hsu F.-L. J. Med. Chem.  1997,  40:  3014 
  • 19b Beaulieu PL. Anderson PC. Cameron DR. Croteau G. Gorys VC. Grand-Maitre C. Lamarre D. Liard F. Paris W. Plamandon L. Soucy F. Thibeault D. Wernic D. Yoakim C. J. Med. Chem.  2000,  43:  1094 
  • 20 Hauze DB. Joullie MM. Tetrahedron  1997,  53:  4239 
17

Slightly lower yields were obtained when non-degassed H2O was used.

18

Frost and co-workers reported the failure of the reaction between 1-naphthalene boronic acid and free α,β-unsaturated carboxylic acid with [Rh(COD)Cl]2 (see ref 3b). In our hands, the use of 2-naphthalene boronic acid in the presence of acrylic acid did not work with [Rh(COD)OH]2 either, which tends to prove the poor reactivity of naphthalene boronic acid derivatives when mixed together with free carboxylic acid under such conditions.