Abstract
A facile and highly efficient copper- and palladium-free procedure
for the one-pot synthesis of ynones via coupling of sodium carboxylate
salts with alkynes is described. In this method, cross-coupling
of terminal alkynes with a mixture of structurally diverse sodium
carboxylate salts, cyanuric chloride and triethylamine in the presence
of magnesium chloride furnishes the corresponding ynones in good
to excellent yields at room temperature.
Key words
one-pot synthesis - alkyne - cyanuric chloride - sodium carboxylate salt - ynone
References and Notes
<A NAME="RB14511ST-1A">1a </A>
Mead D.
Asato AE.
Denny M.
Liu RSH.
Hanzawa Y.
Taguchi T.
Yamada A.
Kobayashi N.
Hosoda A.
Kobayashi Y.
Tetrahedron
Lett.
1987,
28:
259
<A NAME="RB14511ST-1B">1b </A>
Chowdhury C.
Kundu NG.
Tetrahedron
1999,
55:
7011
<A NAME="RB14511ST-1C">1c </A>
Quesnelle CA.
Gill P.
Dodier M.
St. Laurent D.
Serrano-Wu M.
Marinier A.
Martel A.
Mazzucco
CE.
Stickle TM.
Barrett JF.
Vyas DM.
Balasubramanian BN.
Bioorg. Med. Chem. Lett.
2003,
13:
519
<A NAME="RB14511ST-2A">2a </A>
Hojo M.
Omita K.
Hosomi A.
Tetrahedron Lett.
1993,
34:
485
<A NAME="RB14511ST-2B">2b </A>
Arcadi A.
Marenelli F.
Rossi E.
Tetrahedron
1999,
55:
13233
<A NAME="RB14511ST-2C">2c </A>
Kelin AV.
Sromek AW.
Gevorgyan V.
J. Am. Chem. Soc.
2001,
123:
2074
<A NAME="RB14511ST-2D">2d </A>
Jeevnandan A.
Narkunan K.
Ling Y.
J.
Org. Chem.
2001,
66:
6014
<A NAME="RB14511ST-2E">2e </A>
Grotjahn DB.
Van S.
Combs D.
Lev DA.
Schneider C.
Rideout M.
Meyer C.
Hernandez G.
Mejorado L.
J.
Org. Chem.
2002,
67:
9200
<A NAME="RB14511ST-2F">2f </A>
Karpov AS.
Muller TJ.
Org.
Lett.
2003,
5:
3451
<A NAME="RB14511ST-3A">3a </A>
Muzart J.
Piva O.
Tetrahedron
Lett.
1988,
29:
2321
<A NAME="RB14511ST-3B">3b </A>
Shaw JE.
Sherry JJ.
Tetrahedron
Lett.
1971,
4379
<A NAME="RB14511ST-3C">3c </A>
Sheats WB.
Olli LK.
Stout R.
Lundeen JT.
Justus R.
Nigh WG.
J.
Org. Chem.
1979,
44:
4075
<A NAME="RB14511ST-4A">4a </A>
Maeda Y.
Kakiuchi N.
Matsumura S.
Nishimura T.
Kawamura T.
Uemura S.
J.
Org. Chem.
2002,
67:
6718 ; and
references therein
<A NAME="RB14511ST-4B">4b </A>
Augé J.
Lubin-Germain N.
Seghrouchni L.
Tetrahedron
Lett.
2003,
44:
819
<A NAME="RB14511ST-5A">5a </A>
Corey EJ.
Kyler K.
Raju N.
Tetrahedron Lett.
1984,
25:
5115
<A NAME="RB14511ST-5B">5b </A>
Campestrini S.
Furia FD.
Modena G.
J.
Org. Chem.
1990,
55:
3658
<A NAME="RB14511ST-5C">5c </A>
Hirao T.
Misu D.
Agawa T.
Tetrahedron
Lett.
1986,
27:
933
<A NAME="RB14511ST-6A">6a </A>
Mohamed Ahmed MS.
Mori A.
Org. Lett.
2003,
5:
3057 ; and all references therein
<A NAME="RB14511ST-6B">6b </A>
Liang B.
Huang M.
You Z.
Xiong Z.
Lu K.
Fathi R.
Chen J.
Yang Z.
J.
Org. Chem.
2005,
70:
6097
<A NAME="RB14511ST-7A">7a </A>
Goure WF.
Wright ME.
Davis PD.
Labadie SS.
Stille JK.
J.
Am. Chem. Soc.
1984,
106:
6417
<A NAME="RB14511ST-7B">7b </A>
Grisp GT.
Scott WJ.
Stille JK.
J. Am. Chem. Soc.
1984,
106:
7500
<A NAME="RB14511ST-7C">7c </A>
Arcadi A.
Cacchi S.
Marinelli F.
Ace P.
Sanzi G.
Synlett
1995,
823
<A NAME="RB14511ST-8A">8a </A>
Palimkar SS.
Harish Kumar P.
Jogdand NR.
Daniel T.
Lahoti RJ.
Srinivasan KV.
Tetrahedron Lett.
2006,
47:
5527
<A NAME="RB14511ST-8B">8b </A>
Alonso DA.
Nájera C.
Pacheco
MC.
J. Org. Chem.
2004,
69:
1615
<A NAME="RB14511ST-8C">8c </A>
Chen L.
Li C.-J.
Org. Lett.
2004,
6:
3151
<A NAME="RB14511ST-8D">8d </A>
Cox RJ.
Ritson DJ.
Dane TA.
Berge J.
Charmant JPH.
Kantacha A.
Chem. Commun.
2005,
1037
<A NAME="RB14511ST-8E">8e </A>
Likhar PR.
Subhas MS.
Roy M.
Roy S.
Kantam ML.
Helv. Chim. Acta
2008,
91:
259
<A NAME="RB14511ST-8F">8f </A>
Chen J.-Y.
Lin T.-C.
Chen S.-C.
Chen A.-J.
Mou C.-Y.
Tsai F.-Y.
Tetrahedron
2009,
65:
10134
<A NAME="RB14511ST-8G">8g </A>
Bakherad M.
Keivanloo A.
Bahramian B.
Rajaie M.
Tetrahedron Lett.
2010,
51:
33
<A NAME="RB14511ST-9A">9a </A>
Tohda Y.
Sonogashira K.
Hagihara N.
Synthesis
1977,
777
<A NAME="RB14511ST-9B">9b </A>
Verkruijsse HD.
Heus-Kloos YA.
Brandsma L.
J. Organomet. Chem.
1988,
338:
289
<A NAME="RB14511ST-9C">9c </A>
Logue MW.
Teng K.
J. Org. Chem.
1982,
47:
2549
<A NAME="RB14511ST-9D">9d </A>
Wakamatsu T.
Okuda Y.
Oshima K.
Nozaki H.
Bull. Chem. Soc. Jpn.
1985,
58:
2425
<A NAME="RB14511ST-9E">9e </A>
Pérez I.
Sestelo JP.
Sarandeses LA.
J. Am. Chem. Soc.
2001,
123:
4155
<A NAME="RB14511ST-9F">9f </A>
Kakusawa N.
Yamaguchi K.
Kurita J.
Tsuchiya T.
Tetrahedron Lett.
2000,
41:
4143
<A NAME="RB14511ST-10">10 </A>
Davis RB.
Scheiber DH.
J. Am. Chem. Soc.
1956,
78:
1675
<A NAME="RB14511ST-11A">11a </A>
Normant JF.
Synthesis
1972,
63
<A NAME="RB14511ST-11B">11b </A>
Logue MW.
Moore GL.
J.
Org. Chem.
1975,
40:
131
<A NAME="RB14511ST-12">12 </A>
Fontaine M.
Chauvelier J.
Barchewitz P.
Bull.
Soc. Chim. Fr.
1962,
2145
<A NAME="RB14511ST-13">13 </A>
Compagnon PL.
Grosjean B.
Lacour M.
Bull.
Soc. Chim. Fr.
1975,
779
<A NAME="RB14511ST-14">14 </A>
Yashina OG.
Zarva TV.
Vereshchagin LI.
Zh. Org. Khim.
1967,
3:
219 ; Chem. Abstr. 1967 , 66 , 94664
<A NAME="RB14511ST-15">15 </A>
Vereshchagin LI.
Yashina OG.
Zarva TV.
Zh. Org. Khim.
1966,
2:
1895 ; Chem. Abstr . 1967 , 66 , 46070p
<A NAME="RB14511ST-16A">16a </A>
Utimoto K.
Tanaka M.
Kitai M.
Nozaki H.
Tetrahedron
Lett.
1978,
2301
<A NAME="RB14511ST-16B">16b </A>
Birkofer L.
Ritter A.
Uhlenbrauck H.
Chem.
Ber.
1963,
96:
3280
<A NAME="RB14511ST-16C">16c </A>
Walton
DRM.
Waugh F.
J.
Organomet. Chem.
1972,
37:
45
<A NAME="RB14511ST-16D">16d </A>
Gallagher WP.
Maleczka RE.
J.
Org. Chem.
2003,
68:
6775
<A NAME="RB14511ST-17">17 </A>
Markó IE.
Southern JM.
J.
Org. Chem.
1990,
55:
3368
<A NAME="RB14511ST-18">18 </A>
Himbert G.
Angew.
Chem., Int. Ed. Engl.
1979,
18:
405
<A NAME="RB14511ST-19">19 </A>
Chowdhury C.
Kundu NG.
Tetrahedron Lett.
1996,
37:
7323
<A NAME="RB14511ST-20A">20a </A>
Lee KY.
Lee MJ.
Kim JN.
Tetrahedron
2005,
61:
8705
<A NAME="RB14511ST-20B">20b </A>
Keivanloo A.
Bakherad M.
Bahramian B.
Baratnia S.
Tetrahedron Lett.
2011,
52:
1498
<A NAME="RB14511ST-21">21 </A>
Dishart KT.
Levine R.
J. Am. Chem. Soc.
1956,
78:
2268
<A NAME="RB14511ST-22">22 </A>
Blotny G.
Tetrahedron
2006,
62:
9507 ; and all references cited therein
<A NAME="RB14511ST-23A">23a </A>
Soltani Rad MN.
Khalafi-Nezhad A.
Asrari Z.
Behrouz S.
Amini Z.
Behrouz M.
Synthesis
2009,
3983
<A NAME="RB14511ST-23B">23b </A>
Soltani Rad MN.
Khalafi-Nezhad A.
Asrari Z.
Behrouz S.
Synthesis
2010,
2599
<A NAME="RB14511ST-24">24 </A>
Similar reaction conditions were employed
for carboxylic acid, except that Et3 N (6.6 equiv) was
employed
<A NAME="RB14511ST-25A">25a </A>
Venkataraman K.
Wagle DR.
Tetrahedron
Lett.
1979,
3037
<A NAME="RB14511ST-25B">25b </A>
Bandgar BP.
Pandit SS.
Tetrahedron
Lett.
2002,
43:
3413
<A NAME="RB14511ST-25C">25c </A>
Kaminski ZJ.
Paneth P.
Rudzinski J.
J. Org. Chem.
1998,
63:
4248
<A NAME="RB14511ST-25D">25d </A>
Rayle HL.
Fellmeth L.
Org. Process
Res. Dev.
1999,
3:
172
<A NAME="RB14511ST-26">26 </A>
General procedure for coupling of
alkynes with sodium carboxylate salts using cyanuric chloride: To
a solution of sodium carboxylate salt (3.3 mmol) in anhydrous MeCN
(5 mL), was added TCT (1 mmol) and the reaction mixture was stirred
at r.t. for 10 min. A solution of the appropriate alkyne (3 mmol),
Et3 N (3.3 mmol) and MgCl2 (3.3 mmol) in anhydrous
MeCN (5 mL) was added and the solution was stirred for a further
50-110 min (until TLC indicated completion of the reaction,
see Table
[5 ]
). The solution
was filtered and the solvent was evaporated under vacuum. The remaining
foam was then diluted in CHCl3 (50 mL) and subsequently
washed with H2 O (2 × 50 mL).
The organic layer was dried (Na2 SO4 ) and evaporated.
The crude product was purified by short column chromatography on
silica gel (n -hexane-EtOAc,
20:1).