Subscribe to RSS
DOI: 10.1055/s-0030-1260763
Palladium-Catalyzed Direct Arylation Reaction of 2,3,5-Trisubstituted Furans with Aryl Iodides or Aryl Bromides
Publication History
Publication Date:
26 May 2011 (online)
Abstract
Pd-catalyzed direct arylation of 2,3,5-trisubstituted furans with a variety of aryl iodides or aryl bromides that showed high activity with reasonably broad scope was developed. Under optimal conditions, all reactions gave the desired products in moderate to good yields.
Key words
palladium - arylation reaction - 2,3,5-trisubstituted furans - aryl iodides - aryl bromides
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Trost BM. Science 1991, 234: 1471 -
1b
Hassan J.Sévignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
2a
Okazawa T.Satoh T.Miura M.Nomura M. J. Am. Chem. Soc. 2002, 124: 5286 -
2b
Lane BS.Brown MA.Sames D. J. Am. Chem. Soc. 2005, 127: 8050 -
2c
Mori A.Sekiguchi A.Masui K.Shimada T.Horie M.Osakada K.Kawamoto M.Ikeda T. J. Am. Chem. Soc. 2003, 125: 1700 -
2d
Leclerc JP.Fagnou K. Angew. Chem. Int. Ed. 2006, 45: 7781 -
2e
Campeau LC.Rousseaux S.Fagnou K. J. Am. Chem. Soc. 2005, 127: 18020 -
2f
Satoh T.Itaya T.Miura M.Nomura M. Angew. Chem., Int. Ed. Engl. 1997, 36: 1740 -
2g
Daugulis O.Zaitsev VG. Angew. Chem. Int. Ed. 2005, 44: 4046 -
2h
Kobayashi K.Sugie A.Takahashi M.Masui K.Mori A. Org. Lett. 2005, 7: 5083 -
2i
Park CH.Ryabova V.Seregin IV.Sromek AW.Gevorgyan V. Org. Lett. 2004, 6: 1159 -
2j
Li W.Nelson DP.Jensen MS.Hoerner RS.Javadi GJ.Cai D.Larsen RD. Org. Lett. 2003, 5: 4835 -
2k
Glover B.Harvey KA.Liu B.Sharp MJ.Tymoschenko MF. Org. Lett. 2003, 5: 301 -
2l
McClure MS.Glover B.McSorley E.Millar A.Osterhout MH.Roschangar F. Org. Lett. 2001, 3: 1677 -
2m
Kametani Y.Satoh T.Miura M.Nomura M. Tetrahedron Lett. 2000, 41: 2655 -
2n
Zhuravlev FA. Tetrahedron Lett. 2006, 47: 2929 -
3a
Wiedemann SH.Lewis JC.Ellman JA.Bergman RG. J. Am. Chem. Soc. 2006, 128: 2452 -
3b
Lewis JC.Wu JY.Bergman RG.Ellman JA. Angew. Chem. Int. Ed. 2006, 45: 1589 -
3c
Proch S.Kempe R. Angew. Chem. Int. Ed. 2007, 46: 3135 -
3d
Oi S.Fukita S.Inoue Y. Chem. Commun. 1998, 2439 -
3e
Bedford RB.Coles SJ.Hursthouse MB.Limmert ME. Angew. Chem. Int. Ed. 2003, 42: 112 -
3f
Lewis JC.Wiedemann SH.Bergman RG.Ellman JA. Org. Lett. 2004, 6: 35 -
3g
Wang X.Lane BS.Sames D. J. Am. Chem. Soc. 2005, 127: 4996 -
4a
Kakiuchi F.Matsuura Y.Kan S.Chatani N. J. Am. Chem. Soc. 2005, 127: 5936 -
4b
Kakiuchi F.Kan SIK.Chatani N.Murai S. J. Am. Chem. Soc. 2003, 125: 1698 -
4c
Ackermann L.Althammer A.Born R. Angew. Chem. Int. Ed. 2006, 45: 2619 -
4d
Ackermann L. Org. Lett. 2005, 7: 3123 -
4e
Oi S.Ogino Y.Fukita S.Inoue Y. Org. Lett. 2002, 4: 1783 -
4f
Oi S.Fukita S.Hirata N.Watanuki N.Miyano S.Inoue Y. Org. Lett. 2001, 3: 2579 -
5a
Kakiuchi F.Chatani N. Adv. Synth. Catal. 2003, 345: 1077 -
5b
Labinger JA.Bercaw JE. Nature (London) 2002, 417: 507 -
5c
Godula K.Sames D. Science 2006, 312: 67 - 6
Fairlamb IJS. Chem. Soc. Rev. 2007, 36: 1036 -
7a
Caron L.Campeau L.-C.Fagnou K. Org. Lett. 2008, 10: 4533 -
7b
Shabashov D.Daugulis O. J. Org. Chem. 2007, 72: 7720 - 8
Cheng K.Zhang Y.Zhao J.Xie C. Synlett 2008, 1325 -
9a
Joo JM.Tour BB.Sames D. J. Org. Chem. 2010, 75: 4911 -
9b
Nadres ET.Lazareva A.Daugulis O.
J. Org. Chem. 2011, 76: 471 -
9c
Shibahara F.Yamaguchi E.Murai T. Chem. Commun. 2010, 46: 2471 -
9d
Li P.Chai Z.Zhao G.Zhu SZ. Tetrahedron 2009, 65: 1673 -
10a
Bellina F.Calandri C.Cauteruccio S.Rossi R. Tetrahedron 2007, 63: 1970 -
10b
Chiong HA.Daugulis O. Org. Lett. 2007, 9: 1449 -
10c
Yanagisawa S.Sudo T.Noyori R.Itami K. Tetrahedron 2008, 64: 6073 - 11
Ullmann F.Bielecki J. Ber. Dtsch. Chem. Ges. 1901, 34: 2174 -
12a
Hiramatsu T.Guo Y.Hosoya T. Org. Biomol. Chem. 2007, 5: 2916 -
12b
Hosoya T.Hiramatsu T.Ikemoto T.Aoyama H.Ohmae T.Endo M.Suzuki M. Bioorg. Med. Chem. Lett. 2005, 15: 1289 -
12c
Tamagnan G.Baldwin RM.Kula NS.Baldessarini RJ.Innis RB. Bioorg. Med. Chem. Lett. 2000, 10: 1783 -
13a
Horton DA.Bourne GT.Smythe ML. Chem. Rev. 2003, 103: 893 -
13b
Tamagnan GD.Alagille D.Fu X.Kula NS.Baldessarini RJ.Innis RB.Baldwin RM. Bioorg. Med. Chem. Lett. 2005, 15: 1131
References and Notes
General Procedure
for the Synthesis of 1a
Diethyl acetylenedicarboxylate
(2 mmol), prop-2-yn-1-ol (2 mmol), DABCO (0.2 mmol) in CH2Cl2 were
stirred for 10 min at r.t. And then the solution was evaporated
to dryness under reduced pressure. Subsequently, CuI (10% mmol)
and DMF were added at 80 ˚C. After completion
of the reaction (monitored by TLC), the solution was evaporated
to dryness under reduced pressure, and then H2O (10 mL)
was added. The aqueous solution was extracted with Et2O
(3 × 10 mL), and the combined extract
was dried with anhyd MgSO4. The solvent was removed,
and the crude product was separated by column chromatography to
give a pure sample of 1a.
General Procedure
for the Synthesis of 1c
Diethyl acetylenedicarboxylate
(2 mmol), prop-2-yn-1-ol (2 mmol), DABCO (0.2 mmol) in CH2Cl2 were
stirred for 10 min at r.t. And then the solution was evaporated
to dryness under reduced pressure. Subsequently, AgOAc/Ph3P
and toluene were added at 50 ˚C. After completion
of the reaction (monitored by TLC), the solution was evaporated
to
dryness under reduced pressure, and then H2O (10 mL) was
added. The aqueous solution was extracted with Et2O (3 × 10
mL), and the combined extract was dried with anhyd MgSO4.
The solvent was removed, and the crude product was separated by
column chromatography to give a pure sample of 1c.
General Procedure
for the Synthesis of 3a
To the mixture of Pd(OAc)2 (5% mol),
Ph3P (10% mol), Cs2CO3 (1.0
mmol), 1a (0.5 mmol), 2a (0.7
mmol), and DMP (4 mL) were added successively. The mixture was stirred
at 120 ˚C for 20 hours. The solution was extracted with
EtOAc (3 × 15 mL), and the combined extract
was dried with anhyd MgSO4. Solvent was removed, and
the residue was separated by column chromatography to give the pure
sample 3a.
Diethyl
5-Formyl-4-phenylfuran-2,3-dicarboxylate (3a)
¹H
NMR (400 MHz, CDCl3): δ = 9.70 (s,
1 H), 7.47 (s, 5 H), 4.43 (q, J = 8.0
Hz, 2 H), 4.28 (q, J = 8.0
Hz, 2 H), 1.40 (t, J = 8.0
Hz, 3 H), 1.22 (q, J = 8.0
Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 178.0,
162.0, 157.1, 147.5, 144.3, 136.1, 129.7, 129.5, 128.7, 127.5, 126.3,
62.3, 62.1, 14.0, 13.7.
MS (EI): m/z (%) = 316,
288, 225, 213, 170, 115, 77.