Synlett 2011(11): 1515-1518  
DOI: 10.1055/s-0030-1260769
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Brønsted Acid Catalyzed Hydrations and Hydroaminations of (Dicyclopropylmethylene)cyclopropane

Lutz Ackermann*a, Sergei I. Kozhushkova, Dmitry S. Yufitb, Ilan Marekc
a Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
Fax: +49(551)396777; e-Mail: lutz.ackermann@chemie.uni-goettingen.de;
b Department of Chemistry, University of Durham, Durham, South Rd., DH1 3LE, UK
c Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
Further Information

Publication History

Received 28 February 2011
Publication Date:
01 June 2011 (online)

Abstract

(Dicyclopropylmethylene)cyclopropane underwent efficient Brønsted acid catalyzed hydrations and hydroaminations with H2O and basic amines, respectively, occurring with conservation of all three cyclopropane rings.

    References and Notes

  • 1 Transition Metals for Organic Synthesis   2nd ed.:  Beller M. Bolm C. Wiley-VCH; Weinheim: 2004. 
  • For selected representative reviews, see:
  • 2a Hesp KD. Stradiotto M. ChemCatChem  2010,  2:  1192 
  • 2b Müller TE. Hultzsch KC. Yus M. Foubelo F. Tada M. Chem. Rev.  2008,  108:  3795 
  • 2c Brunet JJ. Chu NC. Rodriguez-Zubiri M. Eur. J. Org. Chem.  2007,  4711 
  • 2d Hultzsch KC. Adv. Synth. Catal.  2005,  347:  367 
  • 2e Alonso F. Beletskaya IP. Yus M. Chem. Rev.  2004,  104:  3079 
  • 2f Hultzsch KC. Hampel F. Wagner T. Organometallics  2004,  23:  2601 
  • 2g Roesky PW. Müller TE. Angew. Chem. Int. Ed.  2003,  42:  2708 
  • 2h Müller TE. Beller M. Chem. Rev.  1998,  98:  675 
  • For selected recent examples, see:
  • 3a Reznichenko AL. Nguyen HN. Hultzsch KC. Angew. Chem. Int. Ed.  2010,  49:  8984 
  • 3b Julian LD. Hartwig JF. J. Am. Chem. Soc.  2010,  132:  13813 
  • 3c Leitch DC. Turner CS. Schafer LL. Angew. Chem. Int. Ed.  2010,  49:  6382 
  • 3d Behr A. Johnen L. Rentmeister N. Adv. Synth. Catal.  2010,  352:  2062 
  • 3e Shen XQ. Buchwald SL. Angew. Chem. Int. Ed.  2010,  49:  564 
  • 3f Toups KL. Widenhoefer RA. Chem. Commun.  2010,  46:  1712 ; and references cited therein
  • For selected recent examples, see:
  • 4a Shapiro ND. Rauniyar V. Hamilton GL. Wu J. Toste FD. Nature (London)  2011,  470:  245 
  • 4b Qureshi ZS. Deshmukh KM. Tambade PJ. Dhake KP. Bhalchandra M. Bhanage BM. Eur. J. Org. Chem.  2010,  6233 
  • 4c Taylor JG. Adrio LA. Hii KK. Dalton Trans.  2010,  39:  1171 
  • 4d Ackermann L. Althammer A. Synlett  2008,  995 
  • 4e Cheng XJ. Xia YZ. Wei H. Xu B. Zhang C. Li Y. Qian G. Zhang X. Li K. Li W. Eur. J. Org. Chem.  2008,  1929 
  • 4f Ackermann L. Kaspar LT. Althammer A. Org. Biomol. Chem.  2007,  5:  1975 ; and references cited therein
  • For representative reviews, see:
  • 5a Masarwa A. Marek I. Chem. Eur. J.  2010,  16:  9712 
  • 5b Pellissier H. Tetrahedron  2010,  66:  8341 
  • 5c Audran G. Pellissier H. Adv. Synth. Catal.  2010,  352:  575 
  • 5d de Meijere A. Kozhushkov SI. Schill H. Chem. Rev.  2006,  106:  4926 
  • 5e Brandi A. Cicchi S. Cordero FM. Goti A. Chem. Rev.  2003,  103:  1213 
  • 5f Brandi A. Goti A. Chem. Rev.  1998,  98:  589 
  • For selected reviews on metal-catalyzed reactions of MCPs, see:
  • 6a Rubin M. Rubina V. Gevorgyan V. Chem. Rev.  2007,  107:  3117 
  • 6b Nakamura I. Yamamoto Y. Adv. Synth. Catal.  2002,  344:  111 
  • 6c Binger P. Schmidt T. In Methods of Organic Chemistry (Houben-Weyl)   Vol. E17c:  de Meijere A. Thieme; Stuttgart: 1997.  p.2217-2294  
  • 6d Lautens M. Klute W. Tam W. Chem. Rev.  1996,  96:  49 
  • 6e Binger P. Büch HM. Top. Curr. Chem.  1987,  135:  77 
  • 7a Siriwardana AI. Kamada M. Nakamura I. Yamamoto Y. J. Org. Chem.  2005,  70:  5932 
  • 7b Nakamura I. Itagaki H. Yamamoto Y. Chem. Heterocycl. Compd. (Engl. Transl.)  2001,  37:  1532 
  • 7c Nakamura I. Itagaki H. Yamamoto Y. J. Org. Chem.  1998,  63:  6458 
  • 8 Shi M. Liu LP. Tang J. Org. Lett.  2006,  8:  4043 
  • 9a Smolensky E. Kapon M. Eisen MS. Organometallics  2007,  26:  4510 
  • 9b Smolensky E. Kapon M. Eisen MS. Organometallics  2005,  24:  5495 
  • 10 Ryu J.-S. Li GY. Marks TJ. J. Am. Chem. Soc.  2003,  125:  12584 
  • 11a Scott ME. Lautens M. J. Org. Chem.  2008,  73:  8154 
  • 11b Scott ME. Bethuel Y. Lautens M. J. Am. Chem. Soc.  2007,  129:  1482 
  • 11c Taillier C. Lautens M. Org. Lett.  2007,  9:  591 
  • 11d Scott ME. Schwarz CA. Lautens M. Org. Lett.  2006,  8:  5521 
  • 11e Lu L. Chen G. Ma S. Org. Lett.  2006,  8:  835 
  • 11f Scott ME. Lautens M. Org. Lett.  2005,  7:  3045 
  • 11g Scott ME. Han W. Lautens M. Org. Lett.  2004,  6:  3309 
  • 12a Huang X. Fu W.-J. Synthesis  2006,  1016 
  • 12b Shao L.-X. Xu B. Huang J.-W. Shi M. Chem. Eur. J.  2006,  12:  510 
  • 12c Siriwardana AI. Kathriarachchi KKADS. Nakamura I. Yamamoto Y. Heterocycles  2005,  66:  333 
  • 12d Chen Y. Shi M. J. Org. Chem.  2004,  69:  426 
  • 12e Shi M. Xu B. Huang J.-W. Org. Lett.  2004,  6:  1175 
  • 12f Shi M. Chen Y. Xu B. Tang J. Green Chem.  2003,  5:  85 
  • 12g Shi M. Chen Y. Xu B. Tang J. Tetrahedron Lett.  2002,  43:  8019 
  • 13 Danishefsky S. Acc. Chem. Res.  1979,  12:  66 
  • For rare notable exceptions, see:
  • 14a Fua W. Xian Huang X. Tetrahedron Lett.  2008,  49:  562 
  • 14b Li Q. Shi M. Timmons C. Li G. Org. Lett.  2006,  8:  625 
  • 15 Kozhushkov SI. Yufit DS. Ackermann L. Org. Lett.  2008,  10:  3409 
  • For selected reports on ruthenium-catalyzed C-H bond functionalizations from our laboratories, see:
  • 16a Ackermann L. Vicente R. Potukuchi HK. Pirovano V. Org. Lett.  2010,  12:  5032 
  • 16b Ackermann L. Novák P. Vicente R. Pirovano V. Potukuchi HK. Synthesis  2010,  2245 
  • 16c Ackermann L. Novák P. Org. Lett.  2009,  11:  4966 
  • 16d Ackermann L. Born R. Vicente R. ChemSusChem  2009,  546 
  • 16e Ackermann L. Vicente R. Althammer A. Org. Lett.  2008,  10:  2299 
  • 16f Ackermann L. Althammer A. Born R. Tetrahedron  2008,  64:  6115 
  • 16g Ackermann L. Althammer A. Born R. Synlett  2007,  2833 
  • 16h Review: Ackermann L. Vicente R. Top. Curr. Chem.  2010,  292:  211 
  • 16i Ruthenium-catalyzed hydroamination: Ackermann L. Althammer A. Synlett  2006,  3125 
  • 17a ¹H NMR and ¹³C NMR spectra of 2 were identical to those of an independently prepared sample, following a published procedure. See: Hanack M. Eggensperger H. Liebigs Ann. Chem.  1963,  663:  31 
  • 17b

    Compound 2: ¹H NMR (250 MHz, CDCl3): δ = 1.61 (s, 1 H), 0.79-0.90 (m, 3 H), 0.43-0.49 (m, 6 H), 0.29-0.40 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7 (C), 18.7 (CH), -0.1 (CH2). [D]1-2: ¹H NMR (250 MHz, CDCl3): δ = 1.60 (s, 1 H), 0.79-0.91 (m, 2 H), 0.43-0.49 (m, 6 H), 0.28-0.40 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7 (C), 18.7 (CD), 18.3 (t, J = 24.0 Hz, CH), -0.1 (CH2), -0.2 (CH2).

  • 18 The use of pure HCl as the catalyst may result in ring-opening reactions even under mild reaction conditions: Donskaya NA. Shulishov EV. Shabarov YS. Zh. Org. Khim.  1981,  17:  2102 
  • 21 Yang Y. Huang X. Synlett  2008,  1366 
  • See also:
  • 23a Bernlohr W. Beckhaus HD. Peters K. von Schnering HG. Rüchardt C. Chem. Ber.  1984,  117:  1013 
  • 23b Auzeil N. Tomas A. Fleury MB. Largeron M. Tetrahedron Lett.  2000,  41:  8781 
  • 24a Herrero R. Quintanilla E. Müller P. Abboud J.-LM. Chem. Phys. Lett.  2006,  420:  493 
  • 24b Abboud J.-LM. Alkorta I. Davalos JZ. Müller P. Quintanilla E. Rossier J.-C. J. Org. Chem.  2003,  68:  3786 
  • 24c Olah GA. Reddy VP. Rasul G. Prakash GKS. J. Am. Chem. Soc.  1999,  121:  9994 
  • 24d Arnett EM. Hofelich TC. J. Am. Chem. Soc.  1983,  105:  2889 
  • 24e Olah GA. Westerman PW. Nishimura J. J. Am. Chem. Soc.  1974,  96:  3548 
  • 24f Olah GA. Angew. Chem., Int. Ed. Engl.  1973,  12:  173 
  • 24g Carey FA. Tremper HS. J. Am. Chem. Soc.  1969,  91:  2967 
  • 24h Pittman CU. Olah GA. J. Am. Chem. Soc.  1965,  87:  5123 
  • 24i Deno NC. Richey HG. Liu JS. Hodge JD. Houser JJ. Max J. Wisotsky MJ. J. Am. Chem. Soc.  1962,  84:  2016 
  • 24j Hart H. Law PA.
    J. Am. Chem. Soc.  1962,  84:  2462 
  • 25a Ahrens H, Dietrich H, Auler T, Hills M, Kehne H, Feucht D, Herrmann S, Kather K, and Lehr S. inventors; Ger. Offen., DE  102006059941 A1.  ; Chem. Abstr. 2008, 149, 79650
  • 25b Ahrens H, Dietrich H, Auler T, Hills M, Kehne H, Feucht D, Herrmann S, Kather K, and Lehr S. inventors; PCT Int. Appl., WO  2008074403 A2.  ; Chem. Abstr. 2008, 149, 79649
  • 26a Bénard S. Neuville L. Zhu J. Chem. Commun.  2010,  46:  3393 
  • 26b Bénard S. Neuville L. Zhu J. J. Org. Chem.  2008,  73:  6441 ; and references cited therein
19

However, traces (<5%) of a ring-opened product were detected in the ¹H NMR spectrum of crude product 7b.

20

General Procedure for the Preparation of Benzyl(tricyclopropylmethyl)amine (7a), Phenethyl(tricyclopropylmethyl)amine (7b) and n -Octyl(tricyclopropylmethyl)amine (7c): A flame-dried Schlenk flask was cooled and charged with 1, (402.6 mg, 442.1 µL, 3.0 mmol), the corresponding amine (1.0 equiv) and NH4Cl (16.0 mg, 10 mol%) in anhyd 1,4-dioxane (3.0 mL) under Ar. After stirring the reaction mixture for 48 h at 120 ˚C, Et2O (50 mL) was added at ambient temperature, and the reaction mixture was extracted with aq HCl (0.1 N, 2 × 80 mL). The combined aqueous phases were washed with Et2O (2 × 50 mL) and, after addition of aq NaOH (1 N, 25 mL), extracted with CH2Cl2 (3 × 40 mL). The combined organic phases were dried over K2CO3 and concentrated under reduced pressure. The residue was dissolved in MeOH (20 mL), stirred with charcoal (2.0 g) at ambient temperature overnight, quickly filtered through a thin pad of silica gel and concentrated in vacuo. Amines 7a-c (1.0 mmol) were dissolved in CH2Cl2 (5.0 mL), and a solution of p-TsOH˙H2O (190.2 mg, 1.0 mmol, 1.0 equiv) in MeOH (2.0 mL) was added in one portion at ambient temperature. After an additional stirring for 10 min, the reaction mixture was evaporated, and the corresponding p-toluenesulfonate was purified by slow evaporation of its solution in CH2Cl2-octane (7a˙p-TsOH: 92% yield, and 7c˙p-TsOH: 94% yield) or in THF-octane (7b˙p-TsOH: 95% yield) at +4 ˚C. Compound 7a: colorless oil. ¹H NMR (250 MHz, CDCl3):
δ = 7.21-7.38 (m, 5 H), 3.98 (s, 2 H), 1.53 (br s, 1 H), 0.69-0.71 (m, 3 H), 0.48-0.53 (m, 6 H), 0.29-0.35 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 142.3 (C), 128.0 (CH), 127.8 (CH), 126.6 (CH), 52.9 (C), 46.7 (CH2), 15.9 (CH), 0.0 (CH2). Compound 7a×p-TsOH: colorless crystals; mp 137-139 ˚C. ¹H NMR (250 MHz, CDCl3): δ = 8.34 (br s, 2 H), 7.65 (d, J = 8.0 Hz, 2 H), 7.52-7.56 (m, 2 H), 7.20-7.26 (m, 3 H), 7.16 (d, J = 8.0 Hz, 2 H), 4.29 (t, J = 5.6 Hz, 2 H), 2.37 (s, 3 H), 0.65-0.75 (m, 9 H), 0.40-0.47 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 142.4 (C), 139.9 (C), 132.4 (C), 130.2 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 125.9 (CH), 67.0 (C), 46.5 (CH2), 21.3 (Me), 11.5 (CH), 1.8 (CH2). Compound 7b: colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 7.17-7.29 (m, 5 H), 3.05 (t, J = 7.3 Hz, 2 H), 2.75 (t, J = 7.3 Hz, 2 H), 1.53 (br s, 1 H), 0.51-0.60 (m, 3 H), 0.36-0.42 (m, 6 H), 0.20-0.32 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 140.6 (C), 128.7 (CH), 128.1 (CH), 125.8 (CH), 52.9 (C), 43.8 (CH2), 37.5 (CH2), 15.6 (CH), 0.0 (CH2). Compound 7b˙p-TsOH: colorless crystals; mp 149-150 ˚C. ¹H NMR (250 MHz, CDCl3): δ = 8.48 (br s, 2 H), 7.80 (d, J = 8.0 Hz, 2 H), 7.12-7.26 (m, 7 H), 3.25-3.41 (m, 4 H), 2.38 (s, 3 H), 0.72-0.75 (m, 9 H), 0.41-0.46 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 142.8 (C), 140.0 (C), 137.8 (C), 129.0 (CH), 128.8 (CH), 128.5 (CH), 126.6 (CH), 125.8 (CH), 65.2 (C), 43.9 (CH2), 32.7 (CH2), 21.3 (Me), 11.0 (CH), 1.4 (CH2). Compound 7c: colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 2.75 (t, J = 7.0 Hz, 2 H), 1.65 (br s, 1 H), 1.35-1.51 (m, 2 H), 1.27 (m, 10 H), 0.88 (t, J = 6.5 Hz, 3 H), 0.54-0.63 (m, 3 H), 0.37-0.45 (m, 6 H), 0.23-0.30 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 42.4 (C), 31.8 (CH2), 31.4 (CH2), 29.6 (CH2), 29.3 (CH2), 27.5 (CH2), 26.4 (CH2), 22.6 (CH2), 15.7 (CH), 14.1 (Me), 0.0 (CH2). Compound 7c˙p-TsOH: colorless crystals; mp 159-161 ˚C. ¹H NMR (250 MHz, CDCl3): δ = 8.18 (br s, 2 H), 7.71 (d, J = 8.3 Hz, 2 H), 7.14 (d, J = 8.3 Hz, 2 H), 3.03 (m, 2 H), 2.35 (s, 3 H), 1.92 (m, 2 H), 1.22 (m, 10 H), 0.88 (t, J = 6.5 Hz, 3 H), 0.73-0.75 (m, 9 H), 0.42-0.50 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 143.0 (C), 139.6 (C), 128.6 (CH), 125.7 (CH), 64.8 (C), 42.3 (CH2), 31.8 (CH2), 29.4 (CH2), 29.2 (CH2), 27.4 (CH2), 26.4 (CH2), 22.6 (CH2), 21.3 (Me), 14.1 (Me), 11.0 (CH), 1.4 (CH2).

22

CCDC 821336 (7a˙p-TsOH), CCDC 821337 (7b˙p-TsOH) and CCDC 821338 (7c˙p-TsOH) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk].