Subscribe to RSS
DOI: 10.1055/s-0030-1260769
Efficient Brønsted Acid Catalyzed Hydrations and Hydroaminations of (Dicyclopropylmethylene)cyclopropane
Publication History
Publication Date:
01 June 2011 (online)
Abstract
(Dicyclopropylmethylene)cyclopropane underwent efficient Brønsted acid catalyzed hydrations and hydroaminations with H2O and basic amines, respectively, occurring with conservation of all three cyclopropane rings.
Key words
Brønsted acids - catalysis - hydroaminations - methylenecyclopropanes - ring conservation
- 1
Transition
Metals for Organic Synthesis
2nd ed.:
Beller M.Bolm C. Wiley-VCH; Weinheim: 2004. - For selected representative reviews, see:
-
2a
Hesp KD.Stradiotto M. ChemCatChem 2010, 2: 1192 -
2b
Müller TE.Hultzsch KC.Yus M.Foubelo F.Tada M. Chem. Rev. 2008, 108: 3795 -
2c
Brunet JJ.Chu NC.Rodriguez-Zubiri M. Eur. J. Org. Chem. 2007, 4711 -
2d
Hultzsch KC. Adv. Synth. Catal. 2005, 347: 367 -
2e
Alonso F.Beletskaya IP.Yus M. Chem. Rev. 2004, 104: 3079 -
2f
Hultzsch KC.Hampel F.Wagner T. Organometallics 2004, 23: 2601 -
2g
Roesky PW.Müller TE. Angew. Chem. Int. Ed. 2003, 42: 2708 -
2h
Müller TE.Beller M. Chem. Rev. 1998, 98: 675 - For selected recent examples, see:
-
3a
Reznichenko AL.Nguyen HN.Hultzsch KC. Angew. Chem. Int. Ed. 2010, 49: 8984 -
3b
Julian LD.Hartwig JF. J. Am. Chem. Soc. 2010, 132: 13813 -
3c
Leitch DC.Turner CS.Schafer LL. Angew. Chem. Int. Ed. 2010, 49: 6382 -
3d
Behr A.Johnen L.Rentmeister N. Adv. Synth. Catal. 2010, 352: 2062 -
3e
Shen XQ.Buchwald SL. Angew. Chem. Int. Ed. 2010, 49: 564 -
3f
Toups KL.Widenhoefer RA. Chem. Commun. 2010, 46: 1712 ; and references cited therein - For selected recent examples, see:
-
4a
Shapiro ND.Rauniyar V.Hamilton GL.Wu J.Toste FD. Nature (London) 2011, 470: 245 -
4b
Qureshi ZS.Deshmukh KM.Tambade PJ.Dhake KP.Bhalchandra M.Bhanage BM. Eur. J. Org. Chem. 2010, 6233 -
4c
Taylor JG.Adrio LA.Hii KK. Dalton Trans. 2010, 39: 1171 -
4d
Ackermann L.Althammer A. Synlett 2008, 995 -
4e
Cheng XJ.Xia YZ.Wei H.Xu B.Zhang C.Li Y.Qian G.Zhang X.Li K.Li W. Eur. J. Org. Chem. 2008, 1929 -
4f
Ackermann L.Kaspar LT.Althammer A. Org. Biomol. Chem. 2007, 5: 1975 ; and references cited therein - For representative reviews, see:
-
5a
Masarwa A.Marek I. Chem. Eur. J. 2010, 16: 9712 -
5b
Pellissier H. Tetrahedron 2010, 66: 8341 -
5c
Audran G.Pellissier H. Adv. Synth. Catal. 2010, 352: 575 -
5d
de Meijere A.Kozhushkov SI.Schill H. Chem. Rev. 2006, 106: 4926 -
5e
Brandi A.Cicchi S.Cordero FM.Goti A. Chem. Rev. 2003, 103: 1213 -
5f
Brandi A.Goti A. Chem. Rev. 1998, 98: 589 - For selected reviews on metal-catalyzed reactions of MCPs, see:
-
6a
Rubin M.Rubina V.Gevorgyan V. Chem. Rev. 2007, 107: 3117 -
6b
Nakamura I.Yamamoto Y. Adv. Synth. Catal. 2002, 344: 111 -
6c
Binger P.Schmidt T. In Methods of Organic Chemistry (Houben-Weyl) Vol. E17c:de Meijere A. Thieme; Stuttgart: 1997. p.2217-2294 -
6d
Lautens M.Klute W.Tam W. Chem. Rev. 1996, 96: 49 -
6e
Binger P.Büch HM. Top. Curr. Chem. 1987, 135: 77 -
7a
Siriwardana AI.Kamada M.Nakamura I.Yamamoto Y. J. Org. Chem. 2005, 70: 5932 -
7b
Nakamura I.Itagaki H.Yamamoto Y. Chem. Heterocycl. Compd. (Engl. Transl.) 2001, 37: 1532 -
7c
Nakamura I.Itagaki H.Yamamoto Y. J. Org. Chem. 1998, 63: 6458 - 8
Shi M.Liu LP.Tang J. Org. Lett. 2006, 8: 4043 -
9a
Smolensky E.Kapon M.Eisen MS. Organometallics 2007, 26: 4510 -
9b
Smolensky E.Kapon M.Eisen MS. Organometallics 2005, 24: 5495 - 10
Ryu J.-S.Li GY.Marks TJ. J. Am. Chem. Soc. 2003, 125: 12584 -
11a
Scott ME.Lautens M. J. Org. Chem. 2008, 73: 8154 -
11b
Scott ME.Bethuel Y.Lautens M. J. Am. Chem. Soc. 2007, 129: 1482 -
11c
Taillier C.Lautens M. Org. Lett. 2007, 9: 591 -
11d
Scott ME.Schwarz CA.Lautens M. Org. Lett. 2006, 8: 5521 -
11e
Lu L.Chen G.Ma S. Org. Lett. 2006, 8: 835 -
11f
Scott ME.Lautens M. Org. Lett. 2005, 7: 3045 -
11g
Scott ME.Han W.Lautens M. Org. Lett. 2004, 6: 3309 -
12a
Huang X.Fu W.-J. Synthesis 2006, 1016 -
12b
Shao L.-X.Xu B.Huang J.-W.Shi M. Chem. Eur. J. 2006, 12: 510 -
12c
Siriwardana AI.Kathriarachchi KKADS.Nakamura I.Yamamoto Y. Heterocycles 2005, 66: 333 -
12d
Chen Y.Shi M. J. Org. Chem. 2004, 69: 426 -
12e
Shi M.Xu B.Huang J.-W. Org. Lett. 2004, 6: 1175 -
12f
Shi M.Chen Y.Xu B.Tang J. Green Chem. 2003, 5: 85 -
12g
Shi M.Chen Y.Xu B.Tang J. Tetrahedron Lett. 2002, 43: 8019 - 13
Danishefsky S. Acc. Chem. Res. 1979, 12: 66 - For rare notable exceptions, see:
-
14a
Fua W.Xian Huang X. Tetrahedron Lett. 2008, 49: 562 -
14b
Li Q.Shi M.Timmons C.Li G. Org. Lett. 2006, 8: 625 - 15
Kozhushkov SI.Yufit DS.Ackermann L. Org. Lett. 2008, 10: 3409 - For selected reports on ruthenium-catalyzed C-H bond functionalizations from our laboratories, see:
-
16a
Ackermann L.Vicente R.Potukuchi HK.Pirovano V. Org. Lett. 2010, 12: 5032 -
16b
Ackermann L.Novák P.Vicente R.Pirovano V.Potukuchi HK. Synthesis 2010, 2245 -
16c
Ackermann L.Novák P. Org. Lett. 2009, 11: 4966 -
16d
Ackermann L.Born R.Vicente R. ChemSusChem 2009, 546 -
16e
Ackermann L.Vicente R.Althammer A. Org. Lett. 2008, 10: 2299 -
16f
Ackermann L.Althammer A.Born R. Tetrahedron 2008, 64: 6115 -
16g
Ackermann L.Althammer A.Born R. Synlett 2007, 2833 -
16h Review:
Ackermann L.Vicente R. Top. Curr. Chem. 2010, 292: 211 -
16i Ruthenium-catalyzed hydroamination:
Ackermann L.Althammer A. Synlett 2006, 3125 -
17a
¹H
NMR and ¹³C NMR spectra of 2 were identical to those of an independently
prepared sample, following a published procedure. See:
Hanack M.Eggensperger H. Liebigs Ann. Chem. 1963, 663: 31 -
17b
Compound 2: ¹H NMR (250 MHz, CDCl3): δ = 1.61 (s, 1 H), 0.79-0.90 (m, 3 H), 0.43-0.49 (m, 6 H), 0.29-0.40 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7 (C), 18.7 (CH), -0.1 (CH2). [D]1-2: ¹H NMR (250 MHz, CDCl3): δ = 1.60 (s, 1 H), 0.79-0.91 (m, 2 H), 0.43-0.49 (m, 6 H), 0.28-0.40 (m, 6 H). ¹³C NMR (62.9 MHz, CDCl3): δ = 69.7 (C), 18.7 (CD), 18.3 (t, J = 24.0 Hz, CH), -0.1 (CH2), -0.2 (CH2).
- 18 The use of pure HCl as the catalyst
may result in ring-opening reactions even under mild reaction conditions:
Donskaya NA.Shulishov EV.Shabarov YS. Zh. Org. Khim. 1981, 17: 2102 - 21
Yang Y.Huang X. Synlett 2008, 1366 - See also:
-
23a
Bernlohr W.Beckhaus HD.Peters K.von Schnering HG.Rüchardt C. Chem. Ber. 1984, 117: 1013 -
23b
Auzeil N.Tomas A.Fleury MB.Largeron M. Tetrahedron Lett. 2000, 41: 8781 -
24a
Herrero R.Quintanilla E.Müller P.Abboud J.-LM. Chem. Phys. Lett. 2006, 420: 493 -
24b
Abboud J.-LM.Alkorta I.Davalos JZ.Müller P.Quintanilla E.Rossier J.-C. J. Org. Chem. 2003, 68: 3786 -
24c
Olah GA.Reddy VP.Rasul G.Prakash GKS. J. Am. Chem. Soc. 1999, 121: 9994 -
24d
Arnett EM.Hofelich TC. J. Am. Chem. Soc. 1983, 105: 2889 -
24e
Olah GA.Westerman PW.Nishimura J. J. Am. Chem. Soc. 1974, 96: 3548 -
24f
Olah GA. Angew. Chem., Int. Ed. Engl. 1973, 12: 173 -
24g
Carey FA.Tremper HS. J. Am. Chem. Soc. 1969, 91: 2967 -
24h
Pittman CU.Olah GA. J. Am. Chem. Soc. 1965, 87: 5123 -
24i
Deno NC.Richey HG.Liu JS.Hodge JD.Houser JJ.Max J.Wisotsky MJ. J. Am. Chem. Soc. 1962, 84: 2016 -
24j
Hart H.Law PA.
J. Am. Chem. Soc. 1962, 84: 2462 -
25a
Ahrens H,Dietrich H,Auler T,Hills M,Kehne H,Feucht D,Herrmann S,Kather K, andLehr S. inventors; Ger. Offen., DE 102006059941 A1. ; Chem. Abstr. 2008, 149, 79650 -
25b
Ahrens H,Dietrich H,Auler T,Hills M,Kehne H,Feucht D,Herrmann S,Kather K, andLehr S. inventors; PCT Int. Appl., WO 2008074403 A2. ; Chem. Abstr. 2008, 149, 79649 -
26a
Bénard S.Neuville L.Zhu J. Chem. Commun. 2010, 46: 3393 -
26b
Bénard S.Neuville L.Zhu J. J. Org. Chem. 2008, 73: 6441 ; and references cited therein
References and Notes
However, traces (<5%) of a ring-opened product were detected in the ¹H NMR spectrum of crude product 7b.
20
General Procedure
for the Preparation of Benzyl(tricyclopropylmethyl)amine (7a), Phenethyl(tricyclopropylmethyl)amine
(7b) and
n
-Octyl(tricyclopropylmethyl)amine (7c):
A flame-dried Schlenk flask was cooled and charged with 1, (402.6 mg, 442.1 µL, 3.0 mmol),
the corresponding amine (1.0 equiv) and NH4Cl (16.0 mg,
10 mol%) in anhyd 1,4-dioxane (3.0 mL) under Ar. After
stirring the reaction mixture for 48 h at 120 ˚C, Et2O
(50 mL) was added at ambient temperature, and the reaction mixture
was extracted with aq HCl (0.1 N, 2 × 80
mL). The combined aqueous phases were washed with Et2O
(2 × 50 mL) and, after addition of aq NaOH (1 N, 25 mL), extracted with CH2Cl2 (3 × 40
mL). The combined organic phases were dried over K2CO3 and
concentrated under reduced pressure. The residue was dissolved in
MeOH (20 mL), stirred with charcoal (2.0 g) at ambient temperature overnight,
quickly filtered through a thin pad of silica gel and concentrated
in vacuo. Amines 7a-c (1.0 mmol) were dissolved in CH2Cl2 (5.0
mL), and a solution of p-TsOH˙H2O (190.2
mg, 1.0 mmol, 1.0 equiv) in MeOH (2.0 mL) was added in one portion
at ambient temperature. After an additional stirring for 10 min,
the reaction mixture was evaporated, and the corresponding p-toluenesulfonate was purified by slow
evaporation of its solution in CH2Cl2-octane
(7a˙p-TsOH:
92% yield, and 7c˙p-TsOH: 94% yield) or in THF-octane
(7b˙p-TsOH:
95% yield) at +4 ˚C. Compound 7a: colorless oil. ¹H
NMR (250 MHz, CDCl3):
δ = 7.21-7.38
(m, 5 H), 3.98 (s, 2 H), 1.53 (br s, 1 H), 0.69-0.71 (m,
3 H), 0.48-0.53 (m, 6 H), 0.29-0.35 (m, 6 H). ¹³C NMR
(62.9 MHz, CDCl3): δ = 142.3 (C), 128.0
(CH), 127.8 (CH), 126.6 (CH), 52.9 (C), 46.7 (CH2), 15.9
(CH), 0.0 (CH2). Compound 7a×p-TsOH: colorless crystals; mp 137-139 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.34 (br
s, 2 H), 7.65 (d, J = 8.0 Hz,
2 H), 7.52-7.56 (m, 2 H), 7.20-7.26 (m, 3 H),
7.16 (d, J = 8.0 Hz, 2 H), 4.29
(t, J = 5.6 Hz, 2 H), 2.37 (s,
3 H), 0.65-0.75 (m, 9 H), 0.40-0.47 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 142.4 (C),
139.9 (C), 132.4 (C), 130.2 (CH), 128.6 (CH), 128.5 (CH), 128.4
(CH), 125.9 (CH), 67.0 (C), 46.5 (CH2), 21.3 (Me), 11.5
(CH), 1.8 (CH2). Compound 7b:
colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 7.17-7.29
(m, 5 H), 3.05 (t, J = 7.3 Hz,
2 H), 2.75 (t, J = 7.3 Hz, 2
H), 1.53 (br s, 1 H), 0.51-0.60 (m, 3 H), 0.36-0.42 (m,
6 H), 0.20-0.32 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 140.6 (C),
128.7 (CH), 128.1 (CH), 125.8 (CH), 52.9 (C), 43.8 (CH2),
37.5 (CH2), 15.6 (CH), 0.0 (CH2). Compound 7b˙p-TsOH:
colorless crystals; mp 149-150 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.48 (br
s, 2 H), 7.80 (d, J = 8.0 Hz, 2
H), 7.12-7.26 (m, 7 H), 3.25-3.41 (m, 4 H), 2.38
(s, 3 H), 0.72-0.75 (m, 9 H), 0.41-0.46 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 142.8
(C), 140.0 (C), 137.8 (C), 129.0 (CH), 128.8 (CH), 128.5 (CH), 126.6
(CH), 125.8 (CH), 65.2 (C), 43.9 (CH2), 32.7 (CH2),
21.3 (Me), 11.0 (CH), 1.4 (CH2). Compound 7c:
colorless oil. ¹H NMR (250 MHz, CDCl3): δ = 2.75
(t, J = 7.0 Hz, 2 H), 1.65 (br
s, 1 H), 1.35-1.51 (m, 2 H), 1.27 (m, 10 H), 0.88 (t, J = 6.5 Hz, 3 H), 0.54-0.63
(m, 3 H), 0.37-0.45 (m, 6 H), 0.23-0.30 (m, 6
H). ¹³C NMR (62.9 MHz, CDCl3): δ = 42.4
(C), 31.8 (CH2), 31.4 (CH2), 29.6 (CH2),
29.3 (CH2), 27.5 (CH2), 26.4 (CH2),
22.6 (CH2), 15.7 (CH), 14.1 (Me), 0.0 (CH2).
Compound 7c˙p-TsOH:
colorless crystals; mp 159-161 ˚C. ¹H
NMR (250 MHz, CDCl3): δ = 8.18 (br
s, 2 H), 7.71 (d, J = 8.3 Hz,
2 H), 7.14 (d, J = 8.3 Hz, 2
H), 3.03 (m, 2 H), 2.35 (s, 3 H), 1.92 (m, 2 H), 1.22 (m, 10 H),
0.88 (t, J = 6.5 Hz, 3 H), 0.73-0.75 (m,
9 H), 0.42-0.50 (m, 6 H). ¹³C
NMR (62.9 MHz, CDCl3): δ = 143.0 (C),
139.6 (C), 128.6 (CH), 125.7 (CH), 64.8 (C), 42.3 (CH2),
31.8 (CH2), 29.4 (CH2), 29.2 (CH2),
27.4 (CH2), 26.4 (CH2), 22.6 (CH2),
21.3 (Me), 14.1 (Me), 11.0 (CH), 1.4 (CH2).
CCDC 821336 (7a˙p-TsOH), CCDC 821337 (7b˙p-TsOH) and CCDC 821338 (7c˙p-TsOH) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk].