Synlett 2011(12): 1735-1739  
DOI: 10.1055/s-0030-1260935
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Effective Borate-Mediated Approach to 1-Trifluoromethyl-1-hydroxy-3-ketophosphonates, Phosphinates, and Phosphine Oxides

Dmitrii L. Chizhov*a, Vera Vogelb, Sergey N. Tverdomedb, Valery N. Charushina, Gerd-Volker Röschenthalerb
a I. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, GSP-147, Russia
Fax: +7(343)3693058; e-Mail: dlchizhov@ios.uran.ru;
b School of Engineering and Science, Jacobs University Bremen, P.O. Box 750561, 28725 Bremen, Germany
Further Information

Publication History

Received 27 January 2011
Publication Date:
05 July 2011 (online)

Abstract

Ethyl 1-trifluoromethyl-1-hydroxy-3-oxo-phosphonates, the related (methyl)phosphinates and (phenyl)phosphinates, and phosphine oxides were obtained in good yield via direct phosphonylation of acyltrifluoroacetones with diethyl phosphite, ethyl (methyl)phosphonite, ethyl (phenyl)phosphonite, and diphenyl-phosphine oxide in the presence of triethyl borate. The subsequent dehydration of the selected phosphonates and phosphinates proceeds smoothly affording previously unknown diethyl 1,2-unsaturated 1-trifluoromethyl-3-oxophosphonates, ethyl 1-trifluoro-methyl-3-oxo(methyl)-, and ethyl 1-trifluoromethyl-3-oxo(phenyl) phosphinates in good yields.

    References and Notes

  • 1a Dellaria JF. Maki RG. Stein HH. Cohen J. Whittern D. Marsh K. Hoffman DJ. Plattner JJ. Perun TJ. J. Med. Chem.  1990,  33:  534 
  • 1b Tao M. Bihovsky R. Wells GJ. Mallamo JP. J. Med. Chem.  1998,  41:  3912 
  • 2 Stowasser B. Budt K.-H. Li J.-Q. Peyman A. Ruppert D. Tetrahedron Lett.  1992,  33:  6625 
  • 3 Snoeck R. Holy A. Dewolf-Peeters C. Van Den Oord J. De Clercq E. Andrei G. Antimicrob. Agents Chemother.  2002,  46:  3356 
  • 4a Peters ML. Leonard M. Licata AA. Cleve Clin. J. Med.  2001,  68:  945 
  • 4b Leder BZ. Kronenberg HM. Gastroenterology  2000,  119:  866 
  • 5a Rawlings JB. Nat. Prod. Rep.  1999,  16:  425 
  • 5b Staunton J. Weissman KJ. Nat. Prod. Rep.  2001,  18:  380 
  • 5c Paterson I. Scott JP. J. Chem. Soc., Perkin Trans. 1  1999,  1003 
  • 5d Keck D. Bräse S. Org. Biomol. Chem.  2006,  4:  3574 
  • 6a Kirsch P. Modern Organofluorine Chemistry   Wiley-VCH; Weinheim: 2004. 
  • 6b Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine   John Wiley & Sons; Hoboken / NJ: 2008. 
  • 6c Fluorine in Medicinal Chemistry and Chemical Biology   Ojima I. Wiley-Blackwell; Chichester: 2009. 
  • 7 Romanenko VD. Kukhar VP. Chem. Rev.  2006,  106:  3868 
  • 8a Quin LD. A Guide to Organophosphorus Chemistry   Wiley; New York: 2000. 
  • 8b Savignac P. Iorga B. Modern Phosphonate Chemistry   CRC Press; Boca Raton / FL: 2003. 
  • 8c Atmani A. Memmou F. Bouillon J.-Ph. C. R. Chim.  2009,  12:  963 
  • 8d Albrecht Ł. Albrecht A. Krawczyk H. Jørgensen KA. Chem. Eur. J.  2010,  16:  28 
  • 8e Enders D. Saint-Dizier A. Lannou M.-I. Lenzen A. Eur. J. Org. Chem.  2006,  29 
  • 9a Samanta S. Zhao C.-G. J. Am. Chem. Soc.  2006,  128:  7442 
  • 9b Samanta S. Perera S. Zhao C.-G. J. Org. Chem.  2010,  75:  1101 
  • 9c Dodda R. Zhao C.-G. Org. Lett.  2006,  8:  4911 
  • 10a Schoth R.-M. Sevenard D. Pashkevich K. Röschenthaler G.-V. Coord. Chem. Rev.  2000,  210:  101 
  • 10b Sevenard DV. Lork E. Pashkevich KI. Röschenthaler G.-V. Heteroat. Chem.  2002,  13:  97 
  • 10c

    Chizhov, D. L.; Slepukhin, P. A.; Charushin, V. N.; Röschenthaler G.-V. J. Fluorine Chem., submitted.

  • 11 Francke R. Röschenthaler G.-V. Chemiker-Ztg.  1989,  113:  115 
  • 12a Chizhov DL. Ratner VG. Pashkevich KI. Russ. Chem. Bull.  1999,  48:  758 
  • 12b Yachevskii DS. Chizhov DL. Ratner VG. Pashkevich KI. Russ. Chem. Bull., Int. Ed.  2001,  50:  1233 
  • 12c Chizhov DL. Pashkevich KI. Röschenthaler G.-V. J. Fluorine Chem.  2003,  123:  267 
  • 12d Chizhov DL. Röschenthaler G.-V. J. Fluorine Chem.  2006,  127:  235 
  • 12e Sevenard DV. Kazakova O. Schoth R.-M. Lork E. Chizhov DL. Poveleit J. Röschenthaler G.-V. Synthesis  2008,  1867 
  • 14 Singh YP. Saxena S. Rai AK. Synth. React. Inorg. Met.-Org. Chem.  1982,  12:  867 
  • 15a Jullien J. Pechine JM. Perez F. Piade JJ. Tetrahedron  1982,  38:  1413 
  • 15b Pavlov AM. Chizhov DL. Charushin VN. Russ. J. Org. Chem.  2005,  41:  1449 
  • 15c Bonacorso HG. Martins MAP. Bittencourt SRT. Lourega RV. Zanatta N. Flores AFC. J. Fluorine Chem.  1999,  99:  177 
  • 15d Mkrtchyan EG. Yachevskii DS. Chizhov DL. Charushin VN. Russ. Chem. Bull.  2005,  54:  2150 
  • 16a Mikhailov BM. Pure Appl. Chem.  1977,  49:  749 
  • 16b Kunstle G, and Siegel H. inventors; DE  2402426.  ; Chem. Abstr. 1975, 83, 193406
  • 16c Balaban AT. Rentea CN. Mocanu M. Tetrahedron Lett.  1964,  5:  2049 
  • 16d Chaturvedi A. Nagar PN. Srivastava G. Synth. React. Inorg. Met.-Org. Chem.  1993,  23:  1599 
  • 17 Pashkevich KI. Filyakova VI. Ratner VG. Khomutov OG. Russ. Chem. Bull.  1998,  47:  1239 ; and references cited therein
  • 19 Nenajdenko VG. Druzhinin SV. Balenkova ES. Chemistry of α,β-Unsaturated Trifluoromethyl Ketones   Nova Sci. Publ.; New York: 2007. 
  • 20 Dembitsky VM. Al Quntar AAA. Haj-Yehiaa A. Srebnik M. Mini-Rev. Org. Chem.  2005,  2:  91 
  • 21a Kenyon GL. Westheimer FN. J. Am. Chem. Soc.  1966,  88:  3557 
  • 21b Costisella B. Keitel I. Gross H. Tetrahedron  1981,  37:  1227 
13

Typical Procedure for the Preparation of Compounds 4-7 A mixture of diketone 3 (10.0 mmol), phosphorus reagent [11.0 mmol in the case of diethyl phosphite or ethyl(methyl)phosphonite, 15 mmol in the case of ethyl(phenyl)phosphonite, or 20 mmol in the case of diphenylphosphine oxide], and triethylborate (1.60 g, 11.0 mmol in the case of phosphite and phosphonites or 2.92 g, 20.0 mmol in the case of diphenylphosphine oxide) was refluxed in MeCN (20 mL) for the respective time (Table  [¹] ). All volatile materials were removed in vacuo, and the residue was dissolved in Et2O (30 mL). The ether solution was washed with H2O (10 mL) and 10% solution of Na2CO3 (3 × 10 mL). For compounds 6 and 7 a sat. solution of NaHCO3 was used. Et2O was removed, the crude product was dissolved in CHCl3 (10 mL) and filtered through a layer of silica (3 sm). The solvent was evaporated, and the residue was dried in vacuo for 12 h. For compounds 6 and 7, the products were purified by column chromatography (EtOAc-hexane = 1:2).
Data for Diethyl 1-Hydroxy-3-(4-nitrophenyl)-3-oxo-1-(trifluoromethyl)propylphosphonate (4b)
Yellowish viscous oil. ¹H NMR (200 MHz, CDCl3): δ = 1.23 (t, 3 H, Me, J = 7.1 Hz), 1.27 (t, 3 H, Me, J = 7.1 Hz), 3.21 (dd, 1 H, J Ha-Hb = 16.1 Hz, J Ha-P = 18.6 Hz, CHH), 3.82 (dd, 1 H, J Ha-Hb = 16.1 Hz, J Hb-P = 7.3 Hz, CHH), 4.10-4.36 (m, 4 H, 2 OCH2), 6.74 (d, 1 H, J H-P = 8.3 Hz, OH) 7.61-7.66 (m, 2 H, Ar), 7.88-7.93 (m, 2 H, Ar). ¹9F NMR (188 MHz, CDCl3, C6F6): δ = 88.96 (d, J F-P = 5.2 Hz, CF3). ³¹P-¹H decoupled (81 MHz, CDCl3, 85% H3PO4): δ = 16.68 (q, J P-F = 5.2 Hz). ¹³C NMR (50 MHz, CDCl3) δ = 16.13 (d, ³ J C-P = 5.2 Hz, Me), 38.64 (s, CH2), 63.58 (d, ² J C-P = 7.4 Hz, OCH2), 63.63 (d, ² J C-P = 7.4 Hz, OCH2), 75.58 (dq, ¹ J C-P = 164.6 Hz, ² J C-F = 29.0 Hz), 124.41 (qd, CF3, ¹ J C-F = 285.4 Hz, ² J C-P = 12.6 Hz), 124.42, (CH, Ar), 130.87 (CH, Ar), 143.03 (Ar), 150.70 (Ar), 195.94 (d, ³ J C-P = 8.5 Hz, C=O). Anal. Calcd for C14H17NPF3O7: C, 42.12; H, 4.29; F, 14.28. Found: C, 42.31; H, 4.17; F, 14.42.

18

General Procedure for the Preparation of Compounds 8-10
To a vigorously stirred solution of phosphonate 4 or phosphinate 5 or 6 (5.0 mmol) and dry pyridine (0.79 g, 10 mmol) in dry CH2Cl2 (20 mL) a solution of TFAA (2.10 g, 10 mmol) in dry CH2Cl2 (20 mL) was added dropwise at 0 ˚C. The reaction mixture was stirred for 4 h at the same temperature, warmed to r.t., washed with cold H2O (ca. 5 ˚C, 3 × 10 mL), and filtered through layer of silica (4 sm). The solvent was evaporated and residue was dried in vacuo for 12 h.
Data for Diethyl 3-(4-Nitrophenyl)-3-oxo-1-(trifluoromethyl)prop-1-enylphosphonate (8b) Yellow viscous oil; E/Z = 10:1.
Compound ( Z )-8b: ¹H NMR (200 MHz, CDCl3): δ = 1.27 (t, 6 H, 2 Me, J = 7.1 Hz), 4.01-4.17 (m, 4 H, 2 OCH2), 7.57 (dq, 1 H, J H-P = 39.0 Hz, J H-F = 1.5 Hz, =CH), 8.02-8.06 (m, 2 H, Ar), 8.31-8.36 (m, 2 H, Ar). ¹9F NMR (188 MHz, CDCl3, C6F6): δ = 99.27 (s). ³¹P-¹H coupled (81 MHz, CDCl3, 85% H3PO4): δ = 6.67 (dm, J P-H = 39.0 Hz). ³¹P-¹H decoupled (81 MHz, CDCl3, 85% H3PO4): δ = 6.67 (q,
J P-F = 2.5 Hz). ¹³C NMR (50 MHz, CDCl3): δ = 16.00 (d, ³ J C-P = 7.1 Hz, Me), 63.80 (d, ² J C-P = 5.7 Hz, OCH2), 121.65 (qd, CF3, ¹ J C-F = 275.5 Hz, ² J C-P = 15.5 Hz), 124.06 (CH, Ar), 129.00 (dq, ¹ J C-P = 182.3 Hz, ² J C-F = 32.5 Hz), 129.82, (CH, Ar), 139.48 (Ar), 147.39 (m, =CH), 150.82 (Ar), 190.20 (d, ³ J C-P = 7.1 Hz, C=O).
Compound ( E )-8b: ¹H NMR (200 MHz, CDCl3): δ = 1.41 (t, 6 H, 2 Me, J = 7.1 Hz), 4.19-4.35 (m, 4 H, 2 OCH2), 7.77 (d, 1 H, J H-P = 24.0 Hz, =CH), 8.02-8.06 (m, 2 H, Ar), 8.31-8.36 (m, 2 H, Ar). ¹9F NMR (188 MHz, CDCl3, C6F6): δ = 104.36 (d, J F-P = 5.5 Hz). ³¹P-¹H decoupled (81 MHz, CDCl3, 85% H3PO4): δ = 9.06 (q, J P-F = 5.2 Hz). ¹³C NMR (50 MHz, CDCl3): δ = 16.20 (d, ³ J C-P = 7.0 Hz, Me), 64.09 (d, ² J C-P = 5.7 Hz, OCH2), 124.26 (CH, Ar), 130.04, (CH, Ar), 148.66 (m, =CH). Signals of carbon without hydrogen were not found. Anal. Calcd for C14H15NPF3O6: C, 44.11; H, 3.97; F, 14.95. Found: C, 44.03; H, 3.75; F, 15.10.