Subscribe to RSS
DOI: 10.1055/s-0030-1260935
An Effective Borate-Mediated Approach to 1-Trifluoromethyl-1-hydroxy-3-ketophosphonates, Phosphinates, and Phosphine Oxides
Publication History
Publication Date:
05 July 2011 (online)
Abstract
Ethyl 1-trifluoromethyl-1-hydroxy-3-oxo-phosphonates, the related (methyl)phosphinates and (phenyl)phosphinates, and phosphine oxides were obtained in good yield via direct phosphonylation of acyltrifluoroacetones with diethyl phosphite, ethyl (methyl)phosphonite, ethyl (phenyl)phosphonite, and diphenyl-phosphine oxide in the presence of triethyl borate. The subsequent dehydration of the selected phosphonates and phosphinates proceeds smoothly affording previously unknown diethyl 1,2-unsaturated 1-trifluoromethyl-3-oxophosphonates, ethyl 1-trifluoro-methyl-3-oxo(methyl)-, and ethyl 1-trifluoromethyl-3-oxo(phenyl) phosphinates in good yields.
Key words
acyltrifluoroacetones - phosphonylation - triethyl borate - fluorinated phosphonate - fluorinated phosphinate - fluorinated phosphine oxides
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Dellaria JF.Maki RG.Stein HH.Cohen J.Whittern D.Marsh K.Hoffman DJ.Plattner JJ.Perun TJ. J. Med. Chem. 1990, 33: 534 -
1b
Tao M.Bihovsky R.Wells GJ.Mallamo JP. J. Med. Chem. 1998, 41: 3912 - 2
Stowasser B.Budt K.-H.Li J.-Q.Peyman A.Ruppert D. Tetrahedron Lett. 1992, 33: 6625 - 3
Snoeck R.Holy A.Dewolf-Peeters C.Van Den Oord J.De Clercq E.Andrei G. Antimicrob. Agents Chemother. 2002, 46: 3356 -
4a
Peters ML.Leonard M.Licata AA. Cleve Clin. J. Med. 2001, 68: 945 -
4b
Leder BZ.Kronenberg HM. Gastroenterology 2000, 119: 866 -
5a
Rawlings JB. Nat. Prod. Rep. 1999, 16: 425 -
5b
Staunton J.Weissman KJ. Nat. Prod. Rep. 2001, 18: 380 -
5c
Paterson I.Scott JP. J. Chem. Soc., Perkin Trans. 1 1999, 1003 -
5d
Keck D.Bräse S. Org. Biomol. Chem. 2006, 4: 3574 -
6a
Kirsch P. Modern Organofluorine Chemistry Wiley-VCH; Weinheim: 2004. -
6b
Bégué J.-P.Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine John Wiley & Sons; Hoboken / NJ: 2008. -
6c
Fluorine in Medicinal
Chemistry and Chemical Biology
Ojima I. Wiley-Blackwell; Chichester: 2009. - 7
Romanenko VD.Kukhar VP. Chem. Rev. 2006, 106: 3868 -
8a
Quin LD. A Guide to Organophosphorus Chemistry Wiley; New York: 2000. -
8b
Savignac P.Iorga B. Modern Phosphonate Chemistry CRC Press; Boca Raton / FL: 2003. -
8c
Atmani A.Memmou F.Bouillon J.-Ph. C. R. Chim. 2009, 12: 963 -
8d
Albrecht Ł.Albrecht A.Krawczyk H.Jørgensen KA. Chem. Eur. J. 2010, 16: 28 -
8e
Enders D.Saint-Dizier A.Lannou M.-I.Lenzen A. Eur. J. Org. Chem. 2006, 29 -
9a
Samanta S.Zhao C.-G. J. Am. Chem. Soc. 2006, 128: 7442 -
9b
Samanta S.Perera S.Zhao C.-G. J. Org. Chem. 2010, 75: 1101 -
9c
Dodda R.Zhao C.-G. Org. Lett. 2006, 8: 4911 -
10a
Schoth R.-M.Sevenard D.Pashkevich K.Röschenthaler G.-V. Coord. Chem. Rev. 2000, 210: 101 -
10b
Sevenard DV.Lork E.Pashkevich KI.Röschenthaler G.-V. Heteroat. Chem. 2002, 13: 97 -
10c
Chizhov, D. L.; Slepukhin, P. A.; Charushin, V. N.; Röschenthaler G.-V. J. Fluorine Chem., submitted.
- 11
Francke R.Röschenthaler G.-V. Chemiker-Ztg. 1989, 113: 115 -
12a
Chizhov DL.Ratner VG.Pashkevich KI. Russ. Chem. Bull. 1999, 48: 758 -
12b
Yachevskii DS.Chizhov DL.Ratner VG.Pashkevich KI. Russ. Chem. Bull., Int. Ed. 2001, 50: 1233 -
12c
Chizhov DL.Pashkevich KI.Röschenthaler G.-V. J. Fluorine Chem. 2003, 123: 267 -
12d
Chizhov DL.Röschenthaler G.-V. J. Fluorine Chem. 2006, 127: 235 -
12e
Sevenard DV.Kazakova O.Schoth R.-M.Lork E.Chizhov DL.Poveleit J.Röschenthaler G.-V. Synthesis 2008, 1867 - 14
Singh YP.Saxena S.Rai AK. Synth. React. Inorg. Met.-Org. Chem. 1982, 12: 867 -
15a
Jullien J.Pechine JM.Perez F.Piade JJ. Tetrahedron 1982, 38: 1413 -
15b
Pavlov AM.Chizhov DL.Charushin VN. Russ. J. Org. Chem. 2005, 41: 1449 -
15c
Bonacorso HG.Martins MAP.Bittencourt SRT.Lourega RV.Zanatta N.Flores AFC. J. Fluorine Chem. 1999, 99: 177 -
15d
Mkrtchyan EG.Yachevskii DS.Chizhov DL.Charushin VN. Russ. Chem. Bull. 2005, 54: 2150 -
16a
Mikhailov BM. Pure Appl. Chem. 1977, 49: 749 -
16b
Kunstle G, andSiegel H. inventors; DE 2402426. ; Chem. Abstr. 1975, 83, 193406 -
16c
Balaban AT.Rentea CN.Mocanu M. Tetrahedron Lett. 1964, 5: 2049 -
16d
Chaturvedi A.Nagar PN.Srivastava G. Synth. React. Inorg. Met.-Org. Chem. 1993, 23: 1599 - 17
Pashkevich KI.Filyakova VI.Ratner VG.Khomutov OG. Russ. Chem. Bull. 1998, 47: 1239 ; and references cited therein - 19
Nenajdenko VG.Druzhinin SV.Balenkova ES. Chemistry of α,β-Unsaturated Trifluoromethyl Ketones Nova Sci. Publ.; New York: 2007. - 20
Dembitsky VM.Al Quntar AAA.Haj-Yehiaa A.Srebnik M. Mini-Rev. Org. Chem. 2005, 2: 91 -
21a
Kenyon GL.Westheimer FN. J. Am. Chem. Soc. 1966, 88: 3557 -
21b
Costisella B.Keitel I.Gross H. Tetrahedron 1981, 37: 1227
References and Notes
Typical Procedure
for the Preparation of Compounds 4-7
A mixture
of diketone 3 (10.0 mmol), phosphorus reagent [11.0
mmol in the case of diethyl phosphite or ethyl(methyl)phosphonite,
15 mmol in the case of ethyl(phenyl)phosphonite, or 20 mmol in the
case of diphenylphosphine oxide], and triethylborate (1.60
g, 11.0 mmol in the case of phosphite and phosphonites or 2.92 g, 20.0
mmol in the case of diphenylphosphine oxide) was refluxed in MeCN
(20 mL) for the respective time (Table
[¹]
). All volatile materials
were removed in vacuo, and the residue was dissolved in Et2O
(30 mL). The ether solution was washed with H2O (10 mL)
and 10% solution of Na2CO3 (3 × 10
mL). For compounds 6 and 7 a
sat. solution of NaHCO3 was used. Et2O was
removed, the crude product was dissolved in CHCl3 (10
mL) and filtered through a layer of silica (3 sm). The solvent was
evaporated, and the residue was dried in vacuo for 12 h. For compounds 6 and 7, the products
were purified by column chromatography (EtOAc-hexane = 1:2).
Data for Diethyl 1-Hydroxy-3-(4-nitrophenyl)-3-oxo-1-(trifluoromethyl)propylphosphonate (4b)
Yellowish viscous oil. ¹H
NMR (200 MHz, CDCl3): δ = 1.23 (t,
3 H, Me, J = 7.1
Hz), 1.27 (t, 3 H, Me, J = 7.1
Hz), 3.21 (dd, 1 H, J
Ha-Hb = 16.1
Hz, J
Ha-P = 18.6
Hz, CHH), 3.82 (dd, 1 H, J
Ha-Hb = 16.1
Hz, J
Hb-P = 7.3
Hz, CHH), 4.10-4.36 (m, 4 H,
2 OCH2), 6.74 (d, 1 H, J
H-P = 8.3
Hz, OH) 7.61-7.66 (m, 2 H, Ar), 7.88-7.93 (m,
2 H, Ar). ¹9F NMR (188 MHz, CDCl3,
C6F6): δ = 88.96
(d, J
F-P = 5.2
Hz, CF3). ³¹P-¹H decoupled
(81 MHz, CDCl3, 85% H3PO4): δ = 16.68
(q,
J
P-F = 5.2
Hz). ¹³C NMR (50 MHz, CDCl3) δ = 16.13
(d,
³
J
C-P = 5.2
Hz, Me), 38.64 (s, CH2), 63.58 (d, ²
J
C-P = 7.4
Hz, OCH2), 63.63 (d, ²
J
C-P = 7.4
Hz, OCH2), 75.58 (dq,
¹
J
C-P = 164.6
Hz, ²
J
C-F = 29.0
Hz), 124.41 (qd, CF3, ¹
J
C-F = 285.4
Hz, ²
J
C-P = 12.6
Hz), 124.42, (CH, Ar), 130.87 (CH, Ar), 143.03 (Ar), 150.70 (Ar),
195.94 (d, ³
J
C-P = 8.5 Hz,
C=O). Anal. Calcd for C14H17NPF3O7:
C, 42.12; H, 4.29; F, 14.28. Found: C, 42.31; H, 4.17; F, 14.42.
General Procedure
for the Preparation of Compounds 8-10
To
a vigorously stirred solution of phosphonate 4 or phosphinate 5 or 6 (5.0 mmol)
and dry pyridine (0.79 g, 10 mmol) in dry CH2Cl2 (20
mL) a solution of TFAA (2.10 g, 10 mmol) in dry CH2Cl2 (20
mL) was added dropwise at 0 ˚C. The reaction mixture was
stirred for 4 h at the same temperature, warmed to r.t., washed
with cold H2O (ca. 5 ˚C, 3 × 10
mL), and filtered through layer of silica (4 sm). The solvent was
evaporated and residue was dried in vacuo for 12 h.
Data for Diethyl 3-(4-Nitrophenyl)-3-oxo-1-(trifluoromethyl)prop-1-enylphosphonate (8b)
Yellow viscous oil; E/Z = 10:1.
Compound (
Z
)-8b: ¹H NMR (200 MHz,
CDCl3): δ = 1.27
(t, 6 H, 2 Me, J = 7.1
Hz), 4.01-4.17 (m, 4 H, 2 OCH2), 7.57 (dq, 1
H, J
H-P = 39.0
Hz, J
H-F = 1.5
Hz, =CH), 8.02-8.06 (m, 2 H, Ar), 8.31-8.36
(m, 2 H, Ar). ¹9F NMR (188 MHz, CDCl3,
C6F6): δ = 99.27
(s). ³¹P-¹H
coupled (81 MHz, CDCl3, 85% H3PO4): δ = 6.67
(dm, J
P-H = 39.0
Hz). ³¹P-¹H decoupled
(81 MHz, CDCl3, 85% H3PO4): δ = 6.67
(q,
J
P-F = 2.5
Hz). ¹³C NMR (50 MHz, CDCl3): δ = 16.00
(d, ³
J
C-P = 7.1
Hz, Me), 63.80 (d, ²
J
C-P = 5.7
Hz, OCH2), 121.65 (qd, CF3, ¹
J
C-F = 275.5
Hz, ²
J
C-P = 15.5
Hz), 124.06 (CH, Ar), 129.00 (dq, ¹
J
C-P = 182.3
Hz, ²
J
C-F = 32.5
Hz), 129.82, (CH, Ar), 139.48 (Ar), 147.39 (m, =CH), 150.82
(Ar), 190.20 (d, ³
J
C-P = 7.1
Hz, C=O).
Compound (
E
)-8b: ¹H
NMR (200 MHz, CDCl3): δ = 1.41
(t, 6 H, 2 Me, J = 7.1
Hz), 4.19-4.35 (m, 4 H, 2 OCH2), 7.77 (d, 1
H, J
H-P = 24.0
Hz, =CH), 8.02-8.06 (m, 2 H, Ar), 8.31-8.36
(m, 2 H, Ar). ¹9F NMR (188 MHz, CDCl3,
C6F6): δ = 104.36
(d, J
F-P = 5.5
Hz). ³¹P-¹H
decoupled (81 MHz, CDCl3, 85% H3PO4): δ = 9.06
(q, J
P-F = 5.2
Hz). ¹³C NMR (50 MHz, CDCl3): δ = 16.20
(d, ³
J
C-P = 7.0
Hz, Me), 64.09 (d, ²
J
C-P = 5.7
Hz, OCH2), 124.26 (CH, Ar), 130.04, (CH, Ar), 148.66
(m, =CH). Signals of carbon without hydrogen were not found.
Anal. Calcd for C14H15NPF3O6:
C, 44.11; H, 3.97; F, 14.95. Found: C, 44.03; H, 3.75; F, 15.10.