Synlett 2011(13): 1888-1894  
DOI: 10.1055/s-0030-1260960
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Studies in the Synthesis and Reactivity of New Chiral 1-[(Trialkylsilyl)-methyl]propenamides

Samir BouzBouz*
C.O.B.R.A, UMR-CNRS 6014, INSA et Université de Rouen, IRCOF, Rue Tesnière, 76183 Mont Saint Aignan Cedex, France
e-Mail: samir.bouzbouz@univ-rouen.fr;
Further Information

Publication History

Received 25 February 2011
Publication Date:
21 July 2011 (online)

Abstract

A very simple sequence of reactions such as cross-­metathesis using two catalysts and allylation to give the chiral hydroxyamide is described.

    References and Notes

  • For recent reviews, see:
  • 1a Trnka TM. Grubbs RH. Acc. Chem. Res.  2001,  34:  18 
  • 1b Fürstner A. Angew. Chem. Int. Ed.  2000,  39:  3012 
  • 1c Grubbs RH. Chang S. Tetrahedron  1998,  54:  4413 
  • 1d Armstrong SK. J. Chem. Soc., Perkin Trans. 1  1998,  317 
  • 1e Fürstner A. Top. Organomet. Chem.  1998,  1:  37 
  • 1f Schuster M. Blechert S. Angew. Chem., Int. Ed. Engl.  1997,  36:  2036 
  • 1g Connon SJ. Blechert S. Angew. Chem. Int. Ed.  2003,  42:  1900 
  • 1h Hoveyda AH. Gillingham DG. Van Veldhuizen JJ. Kataoka O. Garber SB. Kingsbury JS. Harrity JPA. Org. Biomol. Chem.  2004,  2:  8 
  • 1i Brümmer O. Rückert A. Blechert S. Chem. Eur. J.  1997,  3:  441 
  • 1j Vernall AJ. Abell AD. Aldrichimica Acta  2003,  36:  93 
  • 1k Chatterjee AK. Choi T.-L. Sanders DP. Grubbs RH. J. Am. Chem. Soc.  2003,  125:  11360 
  • 2 Kingsbury JS. Harrity JPA. Bonitatebus PJ. Hoveyda AH. J. Am. Chem. Soc.  1999,  121:  791 
  • 3 Garber SB. Kingsbury JS. Gray BL. Hoveyda AH. J. Am. Chem. Soc.  2000,  122:  8168 
  • 4 Gessler S. Randl S. Blechert S. Tetrahedron Lett.  2000,  41:  9973 
  • 5 Rothman JH. J. Org. Chem.  2009,  74:  925 
  • 6 Wipf P. Henninger TC. Geib SJ. J. Org. Chem.  1998,  63:  6088 
  • 7 Choi T.-L. Chatterjee AK. Grubbs RH. Angew. Chem. Int. Ed.  2001,  40:  1277 
  • 8 Streuff J. Nieger M. Muñiz K. Chem. Eur. J.  2006,  12:  4362 
  • 13a Majewski M. Mpango GB. Thomas MT. Wu A. Snieckus V. J. Org. Chem.  1981,  46:  2029 
  • 13b Green JR. Snieckus V. Tetrahedron Lett.  1986,  27:  535 
  • 13c Green JR. Alo BI. Majewski M. Snieckus V. Can. J. Chem.  2009,  87:  745 ; and references cited therein
  • 14a Sakurai H. Hosomi A. Saito M. Sasaki K. Iguck H. Sasata J. Araki Y. Tetrahedron  1983,  39:  883 
  • 14b Hosomi A. Shirahata A. Sakurai H. Tetrahedron Lett.  1978,  19:  3043 
  • 14c Sarker TK. Andersen NH. Tetrahedron Lett.  1978,  19:  3513 
  • 14d Deleris G. Dunogues J. Calas R. Pisciotti F. J. Organomet. Chem.  1974,  69:  C15 
  • 14e Deleris G. Dunogues J. Calas R. Pisciotti F. J. Organomet. Chem.  1975,  93:  43 
  • 14f Able EW. Rowley RJ. J. Organomet. Chem.  1975,  84:  199 
  • 14g Hosomi A. Sakurai H. Tetrahedron Lett.  1976,  1295 
  • 15 Katritzky AR. Piffl M. Lang H. Anders E. Chem Rev  1999,  99:  665 
9

Compounds 1-4, and 4′ were prepared from commercially available chiral l-amino esters and acryloyl chloride in the presence of Et3N at 0 ˚C

10

Two separated spots appear corresponding to the two isomers E and Z. The E/Z ratio is greater than 14:1.

11

Spectroscopic Data for Compound 13
¹H NMR (300 MHz, CDCl3): δ = 6.95 (td, J = 8.8, 15.1 Hz, 1 H), 6.87 (d, J = 8.3 Hz, 1 H, NH), 6.45 (d, J = 7.2 Hz, 1 H, NH), 6.36 (d, J = 16.9 Hz, 1 H), 6.23 (m, 1 H), 5.73 (d, J = 14.9 Hz, 1 H), 5.68 (d, J = 9.8 Hz, 1 H) 4.95 (m, 2 H), 3.72 (s, 6 H), 3.37-3.11 (m, 4 H), 1.70 (d, J = 8.8 Hz, 4 H), 0.01 (s, 9 H). ¹³C NMR (75 MHz, CDCl3): δ = 171.2 (s), 170.9 (s), 165.9 (s), 165.3 (s), 145.1 (d), 130.2 (d), 127.8 (t), 120.6 (d), 52.9 (2 q), 51.8 (d), 51.7 (d), 41.2 (t), 41.0 (t), 24.7 (t), -1.7 (3 q). IR (neat): ν = 3320, 2955, 2890, 1741, 1659, 1214, 1186 cm. MS: m/z = 463 (23)[M+ + 1], 405 (64), 391 (100) [M - SiMe3], 377 (17), 313 (9), 276 (20), 242 (7), 204 (56), 190 (25), 170 (20), 156 (7), 142 (1.6), 86 (2). HRMS: m/z calcd for C18H31N2O6S2Si [M]: 463.1393 [M + H+]; found: 463.1404.

12

Spectroscopic Data for Compound 14 E/E-Isomers: ¹H NMR (300 MHz, CDCl3): δ = 6.92 (td, J = 8.8, 14.9 Hz, 2 H), 6.60 (d, J = 7.5 Hz, 2 H, NH), 5.71 (d, J = 15.0 Hz, 2 H), 4.92 (m, 2 H), 3.71 (s, 6 H), 3.15 (ddd, J = 5.9, 14.1, 21.8 Hz, 4 H), 1.65 (d, J = 8.7 Hz, 4 H), 0.01 (s, 18 H). E/E-Isomers: ¹³C NMR (75 MHz, CDCl3): δ = 171.1 (2 s), 165.8 (2 s), 144.7 (2 d), 120.6 (2 d), 52.7 (2 q), 51.5 (2 d), 41.1 (2 t), 24.5 (2 t), -1.8 (6 q). E/Z-Isomers: ¹H NMR (300 MHz, CDCl3): δ = 6.92 (td, J = 8.7, 15.1 Hz, 1 H E ), 6.51 (d, J = 7.5 Hz, 1 H, NH), 6.49 (d, J = 7.3 Hz, 1 H, NH), 6.26 (dd, J = 9.6, 10.7 Hz, 1 H Z ), 5.70 (d, J = 15.1 Hz, 1 H E ), 5.62 (d, J = 11.3 Hz, 1 H Z ), 3.73 (s, 6 H), 3.15 (m, 4 H), 2.35 (m, 2 H), 1.65 (d, J = 8.8 Hz, 2 H), 0.01 (s, 18 H). E/Z-Isomers: ¹³C NMR (75 MHz, CDCl3): δ = 171.2 (s), 171.1 (s), 166.6 (s), 165.8 (s), 146.2 (d), 144.9 (d), 120.6 (d), 117.7 (d), 120.6 (d), 52.8 (q), 52.7 (q), 51.6 (d), 51.2 (d), 41.1 (2 t), 24.6 (t), 22.7 (t), -1.6 (3 q), -1.7 (3 q). IR (neat): ν = 3320, 2955, 2890, 1745, 1656, 1214, 1186 cm. MS:
m/z = 549 (100)[M+ + 1], 477 (8), 276 (22), 242 (6), 204 (2), 170 (1.6), 142 (3), 73 (3). HRMS: m/z calcd for C22H41N2O6S2Si2 [M]: 549.1945 [M + H+]; found: 549.1976.

16

Spectroscopic Data for Compound 15
Major isomer(syn): ¹H NMR (300 MHz, CDCl3): δ = 7.26-7.08 (m, 10 H), 6.31 (d, J = 7.5 Hz, 1 H, NH amide), 5.90 (m, 1 H), 5.27 (d, J = 10.2 Hz, 1 H), 5.17 (d, J = 17.1 Hz, 1 H), 4.79 (m, 1 H), 4.17-4.10 (m, 3 H), 3.31 (br s, 1 H, OH), 3.15 (m, 2 H), 2.82 (dd, J = 7.5, 3.2 Hz, 1 H), 1.28 (t, J = 7.2 Hz, 1 H), 1.12 (d, J = 6.4 Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 171.7 (s), 171.5 (s), 135.9 (s), 132.1 (d), 129.3 (2 d), 128.6 (2 d), 127.2 (d), 121.0 (t), 67.5 (d), 61.7 (q), 57.5 (d), 53.1 (d), 37.8 (t), 19.9 (q),14.2 (q). IR (neat): ν = 3367, 3306, 2978, 2929, 1724, 1632, 1545, 1279, 1180 cm. HRMS: m/z calcd for C17H24NO4 [M]: 306.1705 [M + H+]; found: 306.1711.

17

The identities of the syn and anti products were readily established from their ¹H NMR spectra. The α-products were distinguished by virtue of the larger vicinal coupling constant of the α-methine proton in the anti diastereomer (J = 7-8 Hz) relative to the syn diastereomer (J = 3.2 Hz, Figure  [³] ).

Figure 3

18

Separation of syn and anti isomers was achieved by Supercritical Fluid Chromatography (column: AD-H21 × 250, mobile phase 15% EtOH, parameters: F = 50 mL/min, nozzle pressure: 100 bar).

19

When the reaction is not complete and when the aldehyde contains traces of water, protodesilylation product 23 is formed (Figure  [4] ).

Figure 4

20

General Procedure for the One-Pot Process
To a solution of allyltrimethylsilane (1.1 equiv) and acrylamide 1 (1 mmol) in dry THF (5 mL/mmol) under an argon atmosphere was added Hoveyda-Grubbs catalyst II. After 2 h at r.t. the aldehyde was introduced (1.3 equiv), the temperature reduced to -78 ˚C, and TBAF (1.1 equiv) was added. After 10 min, the reaction mixture was washed with NH4Cl, dried over MgSO4, and concentrated carefully at r.t. under reduced pressure. The residue was purified by a silica gel chromatography to give the desired hydroxyamide.

21

Spectral Data for Compound 24 ¹H NMR (300 MHz, CDCl3): δ = 7.36-6.65 (m, 12 H), 6.07 (d, J = 7.5 Hz, 1 H, NH amide), 5.87 (d, J = 14.9 Hz, 1 H), 4.92 (m, 1 H), 4.14 (q, J = 7.2 Hz, 2 H), 3.77 (s, 3 H), 3.14 (m, 2 H), 1.25 (t, J = 7.2 Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 171.8 (s), 165.8 (s), 160.1 (s), 142.0 (d), 139.3 (d), 136.0 (s), 129.4 (d), 129.0 (s), 128.5 (d), 127.0 (d), 124.1 (d), 122.0 (d), 114.1 (d), 61.5 (t), 55.3 (q), 53.3 (d), 37.9 (t), 14.1 (q). HRMS (EI+): m/z calcd for C23H26NO4 [M]: 380.1862; found: 380.1857.

22

Marimastat is a drug that acts on the Zn²+ ion at the active site of the matrix metalloproteinase (MMP, Figure  [5] ).

Figure 5