References and Notes
For recent reviews, see:
1a
Trnka TM.
Grubbs RH.
Acc. Chem.
Res.
2001,
34:
18
1b
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
1c
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
1d
Armstrong SK.
J. Chem. Soc., Perkin Trans. 1
1998,
317
1e
Fürstner A.
Top. Organomet. Chem.
1998,
1:
37
1f
Schuster M.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2036
1g
Connon SJ.
Blechert S.
Angew.
Chem. Int. Ed.
2003,
42:
1900
1h
Hoveyda AH.
Gillingham DG.
Van Veldhuizen JJ.
Kataoka O.
Garber SB.
Kingsbury JS.
Harrity JPA.
Org. Biomol.
Chem.
2004,
2:
8
1i
Brümmer O.
Rückert A.
Blechert S.
Chem. Eur. J.
1997,
3:
441
1j
Vernall AJ.
Abell AD.
Aldrichimica Acta
2003,
36:
93
1k
Chatterjee AK.
Choi T.-L.
Sanders DP.
Grubbs RH.
J.
Am. Chem. Soc.
2003,
125:
11360
2
Kingsbury JS.
Harrity JPA.
Bonitatebus PJ.
Hoveyda AH.
J.
Am. Chem. Soc.
1999,
121:
791
3
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J.
Am. Chem. Soc.
2000,
122:
8168
4
Gessler S.
Randl S.
Blechert S.
Tetrahedron
Lett.
2000,
41:
9973
5
Rothman JH.
J.
Org. Chem.
2009,
74:
925
6
Wipf P.
Henninger TC.
Geib SJ.
J.
Org. Chem.
1998,
63:
6088
7
Choi T.-L.
Chatterjee AK.
Grubbs RH.
Angew. Chem. Int. Ed.
2001,
40:
1277
8
Streuff J.
Nieger M.
Muñiz K.
Chem.
Eur. J.
2006,
12:
4362
9 Compounds 1 -4 , and 4′ were
prepared from commercially available chiral l -amino
esters and acryloyl chloride in the presence of Et3 N
at 0 ˚C
10 Two separated spots appear corresponding
to the two isomers E and Z . The E /Z ratio is greater than 14:1.
11
Spectroscopic
Data for Compound 13
¹ H NMR (300
MHz, CDCl3 ): δ = 6.95 (td, J = 8.8, 15.1
Hz, 1 H), 6.87 (d, J = 8.3
Hz, 1 H, NH), 6.45 (d, J = 7.2
Hz, 1 H, NH), 6.36 (d, J = 16.9
Hz, 1 H), 6.23 (m, 1 H), 5.73 (d, J = 14.9
Hz, 1 H), 5.68 (d, J = 9.8
Hz, 1 H) 4.95 (m, 2 H), 3.72 (s, 6 H), 3.37-3.11 (m, 4
H), 1.70 (d, J = 8.8
Hz, 4 H), 0.01 (s, 9 H). ¹³ C NMR (75
MHz, CDCl3 ): δ = 171.2 (s), 170.9 (s),
165.9 (s), 165.3 (s), 145.1 (d), 130.2 (d), 127.8 (t), 120.6 (d),
52.9 (2 q), 51.8 (d), 51.7 (d), 41.2 (t), 41.0 (t), 24.7 (t), -1.7
(3 q). IR (neat): ν = 3320, 2955, 2890, 1741,
1659, 1214, 1186 cm-¹ . MS: m/z = 463 (23)[M+ + 1],
405 (64), 391 (100) [M - SiMe3 ],
377 (17), 313 (9), 276 (20), 242 (7), 204 (56), 190 (25), 170 (20),
156 (7), 142 (1.6), 86 (2). HRMS: m/z calcd
for C18 H31 N2 O6 S2 Si [M]:
463.1393 [M + H+ ]; found:
463.1404.
12
Spectroscopic
Data for Compound 14
E /E -Isomers: ¹ H NMR
(300 MHz, CDCl3 ): δ = 6.92 (td, J = 8.8, 14.9
Hz, 2 H), 6.60 (d, J = 7.5
Hz, 2 H, NH), 5.71 (d, J = 15.0
Hz, 2 H), 4.92 (m, 2 H), 3.71 (s, 6 H), 3.15 (ddd, J = 5.9,
14.1, 21.8 Hz, 4 H), 1.65 (d, J = 8.7
Hz, 4 H), 0.01 (s, 18 H). E /E -Isomers: ¹³ C
NMR (75 MHz, CDCl3 ): δ = 171.1 (2 s),
165.8 (2 s), 144.7 (2 d), 120.6 (2 d), 52.7 (2 q), 51.5 (2 d), 41.1
(2 t), 24.5 (2 t), -1.8 (6 q). E /Z -Isomers: ¹ H NMR
(300 MHz, CDCl3 ): δ = 6.92 (td, J = 8.7, 15.1
Hz, 1 H
E
), 6.51 (d, J = 7.5 Hz,
1 H, NH), 6.49 (d, J = 7.3
Hz, 1 H, NH), 6.26 (dd, J = 9.6,
10.7 Hz, 1 H
Z
), 5.70 (d, J = 15.1 Hz, 1
H
E
), 5.62 (d, J = 11.3 Hz,
1 H
Z
), 3.73 (s, 6 H), 3.15
(m, 4 H), 2.35 (m, 2 H), 1.65 (d, J = 8.8
Hz, 2 H), 0.01 (s, 18 H). E /Z -Isomers: ¹³ C
NMR (75 MHz, CDCl3 ): δ = 171.2 (s), 171.1
(s), 166.6 (s), 165.8 (s), 146.2 (d), 144.9 (d), 120.6 (d), 117.7
(d), 120.6 (d), 52.8 (q), 52.7 (q), 51.6 (d), 51.2 (d), 41.1 (2
t), 24.6 (t), 22.7 (t), -1.6 (3 q), -1.7 (3 q).
IR (neat): ν = 3320, 2955, 2890, 1745, 1656, 1214,
1186 cm-¹ . MS:
m/z = 549 (100)[M+ + 1],
477 (8), 276 (22), 242 (6), 204 (2), 170 (1.6), 142 (3), 73 (3).
HRMS: m/z calcd for C22 H41 N2 O6 S2 Si2 [M]:
549.1945 [M + H+ ];
found: 549.1976.
13a
Majewski M.
Mpango GB.
Thomas MT.
Wu A.
Snieckus V.
J. Org. Chem.
1981,
46:
2029
13b
Green JR.
Snieckus V.
Tetrahedron
Lett.
1986,
27:
535
13c
Green JR.
Alo BI.
Majewski M.
Snieckus V.
Can. J.
Chem.
2009,
87:
745 ;
and references cited therein
14a
Sakurai H.
Hosomi A.
Saito M.
Sasaki K.
Iguck H.
Sasata J.
Araki Y.
Tetrahedron
1983,
39:
883
14b
Hosomi A.
Shirahata A.
Sakurai H.
Tetrahedron
Lett.
1978,
19:
3043
14c
Sarker TK.
Andersen NH.
Tetrahedron
Lett.
1978,
19:
3513
14d
Deleris G.
Dunogues J.
Calas R.
Pisciotti F.
J. Organomet. Chem.
1974,
69:
C15
14e
Deleris G.
Dunogues J.
Calas R.
Pisciotti F.
J. Organomet. Chem.
1975,
93:
43
14f
Able EW.
Rowley RJ.
J.
Organomet. Chem.
1975,
84:
199
14g
Hosomi A.
Sakurai H.
Tetrahedron Lett.
1976,
1295
15
Katritzky AR.
Piffl M.
Lang H.
Anders E.
Chem Rev
1999,
99:
665
16
Spectroscopic
Data for Compound 15
Major isomer(syn ): ¹ H
NMR (300 MHz, CDCl3 ): δ = 7.26-7.08
(m, 10 H), 6.31 (d, J = 7.5
Hz, 1 H, NH amide), 5.90 (m, 1 H), 5.27 (d, J = 10.2
Hz, 1 H), 5.17 (d, J = 17.1
Hz, 1 H), 4.79 (m, 1 H), 4.17-4.10 (m, 3 H), 3.31 (br s,
1 H, OH), 3.15 (m, 2 H), 2.82 (dd, J = 7.5,
3.2 Hz, 1 H), 1.28 (t, J = 7.2
Hz, 1 H), 1.12 (d, J = 6.4
Hz, 1 H). ¹³ C NMR (75 MHz, CDCl3 ): δ = 171.7
(s), 171.5 (s), 135.9 (s), 132.1 (d), 129.3 (2 d), 128.6 (2 d),
127.2 (d), 121.0 (t), 67.5 (d), 61.7 (q), 57.5 (d), 53.1 (d), 37.8
(t), 19.9 (q),14.2 (q). IR (neat): ν = 3367, 3306, 2978,
2929, 1724, 1632, 1545, 1279, 1180 cm-¹ .
HRMS:
m/z calcd for
C17 H24 NO4 [M]:
306.1705 [M + H+ ];
found: 306.1711.
17 The identities of the syn and anti products
were readily established from their ¹ H NMR spectra.
The α-products were distinguished by virtue of the larger
vicinal coupling constant of the α-methine proton in the anti diastereomer (J = 7-8
Hz) relative to the syn diastereomer
(J = 3.2 Hz, Figure
[³ ]
).
Figure 3
18 Separation of syn and anti isomers was achieved by Supercritical
Fluid Chromatography (column: AD-H21 × 250,
mobile phase 15% EtOH, parameters: F = 50 mL/min,
nozzle pressure: 100 bar).
19 When the reaction is not complete
and when the aldehyde contains traces of water, protodesilylation
product 23 is formed (Figure
[4 ]
).
Figure 4
20
General Procedure
for the One-Pot Process
To a solution of allyltrimethylsilane
(1.1 equiv) and acrylamide 1 (1 mmol) in
dry THF (5 mL/mmol) under an argon atmosphere was added
Hoveyda-Grubbs catalyst II . After
2 h at r.t. the aldehyde was introduced (1.3 equiv), the temperature
reduced to -78 ˚C, and TBAF (1.1 equiv)
was added. After 10 min, the reaction mixture was washed with NH4 Cl,
dried over MgSO4 , and concentrated carefully at r.t. under
reduced pressure. The residue was purified by a silica gel chromatography
to give the desired hydroxyamide.
21
Spectral Data
for Compound 24
¹ H NMR (300 MHz,
CDCl3 ): δ = 7.36-6.65 (m,
12 H), 6.07 (d, J = 7.5
Hz, 1 H, NH amide), 5.87 (d, J = 14.9
Hz, 1 H), 4.92 (m, 1 H), 4.14 (q, J = 7.2
Hz, 2 H), 3.77 (s, 3 H), 3.14 (m, 2 H), 1.25 (t, J = 7.2
Hz, 1 H). ¹³ C NMR (75 MHz, CDCl3 ): δ = 171.8
(s), 165.8 (s), 160.1 (s), 142.0 (d), 139.3 (d), 136.0 (s), 129.4
(d), 129.0 (s), 128.5 (d), 127.0 (d), 124.1 (d), 122.0 (d), 114.1
(d), 61.5 (t), 55.3 (q), 53.3 (d), 37.9 (t), 14.1 (q). HRMS (EI+ ): m/z calcd for C23 H26 NO4 [M]: 380.1862;
found: 380.1857.
22 Marimastat is a drug that acts on
the Zn²+ ion at the active site of
the matrix metalloproteinase (MMP, Figure
[5 ]
).
Figure 5