RSS-Feed abonnieren
DOI: 10.1055/s-0030-1261231
Tributyltin Hydride as a Selective Reducing Agent for Aryl Enones
Publikationsverlauf
Publikationsdatum:
13. September 2011 (online)
Abstract
Aryl enones undergo selective 1,4-reduction to the corresponding saturated ketones with two equivalents of tributyltin hydride in the presence of a wide range of other potentially reducible functional groups, including alkyl enone. Additionally during this investigation reductive cyclization of bisenones to give five- and six-membered carbocycles via an α,β-coupling process was observed.
Key words
chemoselectivity - selective 1,4-reduction - cyclization - stannane - enone
- 1 
             
            
Keinan E.Greenspoon N. In Comprehensive Organic Synthesis Vol. 8:Trost BM. Pergamon Press; Oxford: 1991. Chap. 3.5. - 2 
             
            
Saikia A.Gopal M.Romesh B.Boruah C. Synlett 2005, 523 - 3 
             
            
Lipshutz BH.Sevesko JM. Angew. Chem. Int. Ed. 2003, 42: 4789 - 4 
             
            
Miura K.Yamada Y.Tomita M.Hosomi A. Synlett 2004, 1985 - 5 
             
            
Moisan L.Hardouin C.Rousseau B.Doris A. Tetrahedron Lett. 2002, 43: 2013 - 6 
             
            
Inoue K.Ishida T.Shibata I.Baba A. Adv. Synth. Catal. 2002, 344: 283 - 7 
             
            
Ranu BC.Dutta J.Guchhait SK. Org. Lett. 2001, 3: 2603 - 8 
             
            
Kawakami T.Miyatake M.Shibata I.Baba A. J. Org. Chem. 1996, 61: 376 - 9 
             
            
Leusink AJ.Noltes JG. Tetrahedron Lett. 1966, 2221 - 10 
             
            
Montgomery J.Oblinger E.Savchenko AV. J. Am. Chem. Soc. 1997, 119: 4911 - 11 
             
            
Enholm EJ.Kinter KS. J. Org. Chem. 1995, 60: 4850 ; and references therein - 14 
             
            
Zhao B.Lu X. Tetrahedron Lett. 2006, 47: 6765 - 15 
             
            
Ruan J.Li X.Saidi O.Xiao J. J. Am. Chem. Soc. 2008, 130: 2424 - 16 
             
            
Zimbron JM.Seeger-Weibel M.Hirt H.Gallou F. Synthesis 2008, 1221 - 17 
             
            
Dohner BR.Saunders WH. J. Am. Chem. Soc. 1986, 108: 245 - 18 
             
            
Cao J.-J.Zhou F.Zhou J. Angew. Chem. Int. Ed. 2010, 49: 4976 - 19 
             
            
Crotti P.Di Bussolo V.Favero L.Franco M.Pineschl M.Napolitano E. Tetrahedron 1999, 55: 5853 - 20 
             
            
Holzer M.Ziegler S.Albrecht B.Kronenberger B.Kaul A.Bartenschlager R.Kattner L.Klien CD.Hartmann RW. Molecules 2008, 13: 1081 - 21 
             
            
Lebel H. Organometallics 2008, 27: 2676 - 22 
             
            
Chow YL.Cheng X. Can. J. Chem. 1991, 69: 1575 - 23 
             
            
Wang L.-C.Jang H.-Y.Roh Y.Lynch V.Schultz AJ.Wang X.Krische MJ. J. Am. Chem. Soc. 2001, 123: 5112 - 24 
             
            
Nakamura M.Miki M.Majima T. J. Chem. Soc., Perkin Trans. 1 2000, 415 
References and Notes
All commercially procured chemicals
         were used as received. Dichloromethane, triethylamine, diethyl ether,
         benzene (C6D6) were distilled from calcium
         hydride. THF was distilled from lithium aluminum hydride. Reagent
         grade solvents were used for solvent extraction and organic extracts
         were dried over anhyd Na2SO4. Silica gel 60
         (230-400 mesh ASTM) was used for flash chromatography with anhyd
         hexane-EtOAc. ¹H NMR spectra were recorded
         on 500 MHz Varian, 500 MHz Bruker or 300 MHz Varian spectrometers.
         The proton chemical shifts (δ) are reported as parts per
         million relative to 7.26 ppm for CDCl3, 7.14 ppm for
         C6D6, 5.32 for CD2Cl2.
         Typical Procedure for the Selective Reduction
            of Aryl Enones: To a stirred solution of the aryl vinyl ketone
         (1.0 mmol) in benzene (3.3 mL, 0.3 M) in a resealable tube at r.t. under
         argon was added tributyltin hydride (0.58 g, 2.0 mmol). The reaction
         mixture was subsequently heated to 80 ˚C for 3
         h. Upon completion the reaction mixture was concentrated en vacuo
         and purified by flash column chromatography to give the reduced
         product as a clear oil.
NMR data: 1b,¹4 3b,² 4b,¹5 5b,¹6 6b,¹7 7b,¹8 8b,¹9 9b,²0 11b,²¹ 15b,²² 17b and 18b,²³ 17c.²4 Compound 2b: ¹H NMR (300 MHz, CD2Cl2): δ = 7.95 (m, 2 H), 7.55 (m, 1 H), 7.47 (m, 2 H), 6.78 (dt, J = 15.95, 6.9 Hz, 1 H), 6.09 (dd, J = 16.0, 1.4 Hz, 1 H), 2.96 (t, J = 7.2 Hz, 2 H), 2.20 (s, 3 H), 2.09 (tdd, J = 7.0, 7.0, 1.5 Hz, 2 H), 1.71 (tt, J = 7.15, 7.15 Hz, 2 H), 1.29-1.53 (m, 10 H). ¹³C NMR (75 MHz, CD2Cl2): δ = 200.5, 198.6, 148.8, 137.7, 133.2, 131.7, 129.0, 128.4, 38.9, 32.9, 29.9, 29.7, 29.6, 28.6, 27.0, 24.7. Compound 10b: ¹H NMR (300 MHz, CD2Cl2): δ = 9.48 (d, J = 8.0 Hz, 1 H), 7.95 (m, 2 H), 7.55 (m, 1 H), 7.47 (m, 2 H), 6.85 (dt, J = 15.7, 6.6 Hz, 1 H), 6.09 (dd, J = 15.2, 7.7 Hz, 1 H), 2.96 (t, J = 7.2 Hz, 2 H), 2.32 (dt, J = 7.4, 7.2 Hz, 2 H), 1.71 (tt, J = 7.2, 6.9 Hz, 2 H), 1.50 (tt, J = 6.9, 6.9 Hz, 2 H) 1.35 (m, 8 H). ¹³C NMR (75 MHz, CD2Cl2): δ = 200.2, 194.1, 159.17, 137.4, 133.1, 132.9, 128.7, 1281, 38.7, 32.8, 29.6, 29.5, 29.4, 29.3, 28.0, 24.4. Compound 12b: ¹H NMR (300 MHz, CD2Cl2): δ = 7.93 (m, 2 H), 7.55 (m, 1 H), 7.46 (m, 2 H), 6.94 (dt, J = 15.7, 6.9 Hz, 1 H), 5.80 (dd, J = 15.4, 1.4 Hz, 1 H), 3.67 (s, 3 H), 2.94 (t, J = 7.4 Hz, 2 H), 2.19 (tdd, J = 7.9, 6.9, 1.1 Hz, 2 H), 1.71 (tt, J = 7.2, 6.8 Hz, 2 H), 1.24-1.52 (m, 10 H). ¹³C NMR (75 MHz, CD2Cl2): δ = 200.3, 167.1, 149.8, 137.9, 132.9, 128.7, 128.1, 120.9, 51.4, 38.7, 32.3, 29.6, 29.5, 29.4, 29.2, 28.2, 24.4.