Handchir Mikrochir Plast Chir 2010; 42(6): 354-359
DOI: 10.1055/s-0030-1261888
Übersichtsarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Tissue Engineering von Skelettmuskelgewebe – Stand und Perspektiven

Skeletal Muscle Tissue Engineering – Current Concepts and Future PerspectivesD. Klumpp1 , R. E.  Horch1 , F. Bitto1 , A. M.  Boos1 , U. Kneser1 , J. P.  Beier1
  • 1Universitätsklinikum Erlangen, Plastisch- und Handchirurgische Klinik, Erlangen
Weitere Informationen

Publikationsverlauf

eingereicht 8.12.2009

akzeptiert 2.6.2010

Publikationsdatum:
11. August 2010 (online)

Zusammenfassung

Besonders im Bereich des funktionellen Muskelersatzes wie er beispielsweise bei Fazialislähmungen oder nach Kompartmentsyndrom verwendet wird, geht der resultierende Hebedefekt in der Regel mit einer funktionellen Einschränkung einher. Das Skelettmuskel Tissue Engineering könnte sowohl zur Einsparung des Hebedefektes als auch zu einem besseren funktionellen Ergebnis an der Empfängerstelle führen, da die Zusammensetzung des Transplantates auf seine speziellen Aufgaben abgestimmt werden könnte. Die Hindernisse, die einer klinischen Anwendung des Tissue engineerings von Skelettmuskel im Wege stehen, sind speziellen mechanischen und biologischen Anforderungen an eine geeignete dreidimensionale Matrix, die außer Biokompatibilität auch eine ausreichende Stabilität bei gleichzeitig hoher Elastizität zeigen sollte, sowie die unzureichende Differenzierung von implantierten Muskelvorläuferzellen in vivo. Die Einführung von neuartigen Materialien, wie z. B. elektrogesponnenen Nanofasern könnte durch die Möglichkeit zur genauen Anpassung der Matrixeigenschaften wie auch zur parallelen Orientierung der Fasern bald eine geeignete Matrix liefern. Die Vor- und Nachteile der Anwendung von Muskelvorläuferzellen oder mesenchymalen Stammzellen werden in diesem Artikel diskutiert. Für die stabile myogene Differenzierung in vivo stehen bisher nur wenige klinisch anwendbare Methoden zur Verfügung, jedoch gilt die Neurotisation des gezüchteten Gewebes als Differenzierungsmethode der Wahl für die spätere Transplantation als funktionellen Muskelersatz. Hier besteht noch großer Forschungsbedarf zur Etablierung eines geeigneten Modells und der Untersuchung der induzierten Differenzierung.

Abstract

Tissue engineering of skeletal muscle could have great advantages in every clinical setting in need of neurovascular muscle transfer, e. g., facial palsy or Volkmann's contracture. There are 2 great obstacles for the clinical application of engineered muscle tissue at the moment: firstly, finding a three-dimensional matrix that matches the demands concerning biocompatibility, stability and elasticity; secondly, the insufficient differentiation of implanted myoblasts, since myoblast differentiation in vivo is barely controllable and subject to a variety of influences. Furthermore axial vascularisation and neurotisation of such tissue-engineered skeletal muscle constructs play a pivotal role for any later application. An overview of the current status of skeletal muscle tissue engineering technologies and concepts for future perspective in this emerging field is presented in this article.

Literatur

  • 1 Pou AM. Update on new biomaterials and their use in reconstructive surgery.  Curr Opin Otolaryngol Head Neck Surg. 2003;  11 (4) 240-244
  • 2 Ballyns JJ, Bonassar LJ. Image-guided tissue engineering.  J Cell Mol Med. 2009;  13 (8A) 1428-1436
  • 3 Warnke PH. et al . Growth and transplantation of a custom vascularised bone graft in a man.  Lancet. 2004;  364 (9436) 766-770
  • 4 Kellouche S. et al . Tissue engineering for full-thickness burns: a dermal substitute from bench to bedside.  Biochem Biophys Res Commun. 2007;  363 (3) 472-478
  • 5 Vavken P, Samartzis D. Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials.  Osteoarthritis Cartilage.
  • 6 Le Grand F, Rudnicki MA. Skeletal muscle satellite cells and adult myogenesis.  Curr Opin Cell Biol. 2007;  19 (6) 628-633
  • 7 Kuang S. et al . Asymmetric self-renewal and commitment of satellite stem cells in muscle.  Cell. 2007;  129 (5) 999-1010
  • 8 Weintraub H. et al . The myoD gene family: nodal point during specification of the muscle cell lineage.  Science. 1991;  251 (4995) 761-766
  • 9 Huang YC, Dennis RG, Baar K. Cultured slow vs. fast skeletal muscle cells differ in physiology and responsiveness to stimulation.  Am J Physiol Cell Physiol. 2006;  291 (1) C11-7
  • 10 Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells.  Proc Natl Acad Sci U S A. 1968;  61 (2) 477-483
  • 11 Mollmann H. et al . Stem cell-mediated natural tissue engineering.  J Cell Mol Med. 2009; 
  • 12 Barile L. et al . Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart.  J Cell Mol Med. 2009; 
  • 13 Roche R, Festy F, Fritel X. Stem cells for stress urinary incontinence: the adipose promise.  J Cell Mol Med. 2009; 
  • 14 Brayfield C, Marra K, Rubin JP. Adipose stem cells for soft tissue regeneration.  Handchir Mikrochir Plast Chir. 42 (2) 124-128
  • 15 Lee RH. et al . Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue.  Cell Physiol Biochem. 2004;  14 (4-6) 311-324
  • 16 Chen L. et al . Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice.  PLoS One. 2009;  4 (9) e7119
  • 17 Satija NK. et al . Mesenchymal Stem Cell-based Therapy: A New Paradigm in Regenerative Medicine.  J Cell Mol Med. 2009; 
  • 18 Rossignol J. et al . Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation.  J Cell Mol Med. 2009; 
  • 19 Amado LC. et al . Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.  Proc Natl Acad Sci U S A. 2005;  102 (32) 11474-11479
  • 20 Nesselmann C. et al . Mesenchymal stem cells and cardiac repair.  J Cell Mol Med. 2008;  12 (5B) 1795-1810
  • 21 Odorfer KI. et al . Role of endogenous bone marrow cells in long-term repair mechanisms after myocardial infarction.  J Cell Mol Med. 2008;  12 (6B) 2867-2874
  • 22 Tateishi K. et al . Stemming heart failure with cardiac- or reprogrammed-stem cells.  J Cell Mol Med. 2008;  12 (6A) 2217-2232
  • 23 Meirelles Lda S, Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells.  Front Biosci. 2009;  14 4281-4298
  • 24 Moscoso I. et al . Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation.  Transplant Proc. 2005;  37 (1) 481-482
  • 25 Vandenburgh HH. Dynamic mechanical orientation of skeletal myofibers in vitro.  Dev Biol. 1982;  93 (2) 438-443
  • 26 Bach AD. et al . A new approach to tissue engineering of vascularized skeletal muscle.  J Cell Mol Med. 2006;  10 (3) 716-726
  • 27 Beier JP. et al . Collagen matrices from sponge to nano: new perspectives for tissue engineering of skeletal muscle.  BMC Biotechnol. 2009;  9 34
  • 28 Kroehne V. et al . Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts.  J Cell Mol Med. 2008; 
  • 29 Srouji S. et al . 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold.  J Mater Sci Mater Med. 2007; 
  • 30 Arkudas A. et al . Evaluation of blood vessel ingrowth in fibrin gel subject to type and concentration of growth factors.  J Cell Mol Med. 2008; 
  • 31 Chew SY. et al . The role of electrospinning in the emerging field of nanomedicine.  Curr Pharm Des. 2006;  12 (36) 4751-4770
  • 32 Nair LS, Bhattacharyya S, Laurencin CT. Development of novel tissue engineering scaffolds via electrospinning.  Expert Opin Biol Ther. 2004;  4 (5) 659-668
  • 33 Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers.  Angew Chem Int Ed Engl. 2007;  46 (30) 5670-5703
  • 34 Boudriot U. et al . Electrospinning approaches toward scaffold engineering--a brief overview.  Artif Organs. 2006;  30 (10) 785-792
  • 35 Buttafoco L. et al . Electrospinning of collagen and elastin for tissue engineering applications.  Biomaterials. 2006;  27 (5) 724-734
  • 36 Su Y. et al . Fabrication and characterization of biodegradable nanofibrous mats by mix and coaxial electrospinning.  J Mater Sci Mater Med. 2009; 
  • 37 Padin-Iruegas ME. et al . Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction.  Circulation. 2009;  120 (10) 876-887
  • 38 Chakraborty S. et al . Electrohydrodynamics: A facile technique to fabricate drug delivery systems.  Adv Drug Deliv Rev. 2009;  61 (12) 1043-1054
  • 39 Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering.  Biomaterials. 2008;  29 (13) 1989-2006
  • 40 Huber A, Pickett A, Shakesheff KM. Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays.  Eur Cell Mater. 2007;  14 56-63
  • 41 Venugopal J. et al . In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices.  Cell Biol Int. 2005;  29 (10) 861-867
  • 42 Vandenburgh HH. Mechanical forces and their second messengers in stimulating cell growth in vitro.  Am J Physiol. 1992;  262 (3 Pt 2) R350-R355
  • 43 Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel.  In Vitro Cell Dev Biol. 1988;  24 (3) 166-174
  • 44 Yamamoto Y. et al . Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique.  J Biosci Bioeng. 2009;  108 (6) 538-543
  • 45 Flaibani M. et al . Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation.  Tissue Eng Part A. 2009;  15 (9) 2447-2457
  • 46 Stern-Straeter J. et al . Impact of electrical stimulation on three-dimensional myoblast cultures – a real-time RT-PCR study.  J Cell Mol Med. 2005;  9 (4) 883-892
  • 47 Liao IC. et al . Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers.  Cell Mol Bioeng. 2008;  1 (2-3) 133-145
  • 48 Thil MA. et al . Two-way communication for programming and measurement in a miniature implantable stimulator.  Med Biol Eng Comput. 2005;  43 (4) 528-534
  • 49 Bleiziffer O. et al . T17b murine embryonal endothelial progenitor cells can be induced towards both proliferation and differentiation in a fibrin matrix.  J Cell Mol Med. 2009;  13 (5) 926-935
  • 50 Fiegel HC. et al . Fetal Hepatocyte Transplantation in a Vascularized AV-Loop Transplantation Model in the Rat.  J Cell Mol Med. 2008; 
  • 51 Hutmacher DW. et al . Translating tissue engineering technology platforms into cancer research.  J Cell Mol Med. 2009;  13 (8A) 1417-1427
  • 52 Arkudas A. et al . Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts.  Tissue Eng. 2007;  13 (7) 1549-1560
  • 53 Arkudas A. et al . Fibrin gel-immobilized VEGF and bFGF efficiently stimulate angiogenesis in the AV loop model.  Mol Med. 2007;  13 (9-10) 480-487
  • 54 Levenberg S. et al . Engineering vascularized skeletal muscle tissue.  Nat Biotechnol. 2005;  23 (7) 879-884
  • 55 Beier JP. et al . De novo generation of axially vascularized tissue in a large animal model.  Microsurgery. 2009;  29 (1) 42-51
  • 56 Beier JP. et al . Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model.  J Tissue Eng Regen Med. 2009; 
  • 57 Eberli D. et al . Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro.  Methods. 2009;  47 (2) 98-103
  • 58 Barteau B. et al . Physicochemical parameters of non-viral vectors that govern transfection efficiency.  Curr Gene Ther. 2008;  8 (5) 313-323
  • 59 Eisenberg I, Alexander MS, Kunkel LM. miRNAS in normal and diseased skeletal muscle.  J Cell Mol Med. 2009;  13 (1) 2-11
  • 60 Nakasa T. et al . Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model.  J Cell Mol Med. 2009; 
  • 61 Nelson SF. et al . Emerging genetic therapies to treat Duchenne muscular dystrophy.  Curr Opin Neurol. 2009;  22 (5) 532-538
  • 62 Bach AD, Beier JP, Stark GB. Expression of Trisk 51, agrin and nicotinic-acetycholine receptor epsilon-subunit during muscle development in a novel three-dimensional muscle-neuronal co-culture system.  Cell Tissue Res. 2003;  314 (2) 263-274
  • 63 Messina A. et al . Generation of a vascularized organoid using skeletal muscle as the inductive source.  FASEB J. 2005;  19 (11) 1570-1572
  • 64 Noah EM. et al . Impact of innervation and exercise on muscle regeneration in neovascularized muscle grafts in rats.  Ann Anat. 2002;  184 (2) 189-197
  • 65 Giunta RE, Machens HG. Zur aktuellen Situation von Wissenschaft und Forschung der Plastischen Chirurgie in Deutschland.  . 2009;  41 (6) 359-363

Korrespondenzadresse

Dr. Justus Patrick Beier 

Universitätsklinikum Erlangen

Plastisch- und Handchirurgische

Klinik

Krankenhausstraße 12

91054 Erlangen

eMail: Justus.Beier@uk-erlangen.de