Semin Thromb Hemost 2010; 36(6): 594-610
DOI: 10.1055/s-0030-1262881
© Thieme Medical Publishers

Treatment of Typical (Enteropathic) Hemolytic Uremic Syndrome

Martin Bitzan1 , Franz Schaefer2 , Didier Reymond3
  • 1Department of Pediatrics, Division of Nephrology, McGill University, Montreal Children's Hospital, Montreal, Quebec, Canada
  • 2Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
  • 3Thallion Pharmaceuticals Inc., Montreal, Quebec, Canada
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. September 2010 (online)

ABSTRACT

Typical enteropathic HUS (eHUS) is triggered by Shiga toxin (Stx)-producing bacteria (STPB), predominantly Stx-producing Escherichia coli O157. The cell biological aspects of Stx have been well defined, but host factors potentially predisposing to the development or severity of HUS remain elusive. Treatment of eHUS includes supportive measures and invasive extracorporeal therapies. Thirty to 60% of children with eHUS require dialysis. Peritoneal and hemodialysis appear equally effective. Patient age, center experience, and equipment availability determine the choice of the modality; circulatory instability may require continuous renal replacement therapies. At present, no evidence indicates that plasma infusion or exchange therapies improve outcome of Stx-induced HUS. However, the traditional separation between diarrhea-positive (D+) and negative (D) HUS, implying two entirely different pathological pathways, requires a fresh look: Atypical HUS may follow nonspecific diarrhea, and, conversely, STPB and fecal Stx may not be detected anymore at the time of the diagnosis of HUS. Recently, Stx has been found to directly interfere with the alternative complement pathway regulator factor H in vitro, whereas some patients with Stx-HUS demonstrate evidence of complement activation. Among newer treatments for eHUS, development of Stx-neutralizing monoclonal antibodies is the most advanced. This review concludes with a discussion of the rationale, mode of action, and status of presently available therapeutic antibodies against Stx2 and Stx1.

REFERENCES

  • 1 Karmali M A, Petric M, Lim C, Fleming P C, Arbus G S, Lior H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli .  J Infect Dis. 1985;  151(5) 775-782
  • 2 Tarr P I, Gordon C A, Chandler W L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome.  Lancet. 2005;  365(9464) 1073-1086
  • 3 Loirat C, Noris M, Frémeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children.  Pediatr Nephrol. 2008;  23(11) 1957-1972
  • 4 Skerka C, Józsi M, Zipfel P F, Dragon-Durey M A, Frémeaux-Bacchi V. Autoantibodies in haemolytic uraemic syndrome (HUS).  Thromb Haemost. 2009;  101(2) 227-232
  • 5 Goldwater P N. Treatment and prevention of enterohemorrhagic Escherichia coli infection and hemolytic uremic syndrome.  Expert Rev Anti Infect Ther. 2007;  5(4) 653-663
  • 6 Konowalchuk J, Speirs J I, Stavric S. Vero response to a cytotoxin of Escherichia coli .  Infect Immun. 1977;  18(3) 775-779
  • 7 Karmali M A, Steele B T, Petric M, Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools.  Lancet. 1983;  1(8325) 619-620
  • 8 Bitzan M, Poole R, Mehran M et al. Safety and pharmacokinetics of chimeric anti-Shiga toxin 1 and anti-Shiga toxin 2 monoclonal antibodies in healthy volunteers.  Antimicrob Agents Chemother. 2009;  53(7) 3081-3087
  • 9 Butler T, Islam M R, Azad M A, Jones P K. Risk factors for development of hemolytic uremic syndrome during shigellosis.  J Pediatr. 1987;  110(6) 894-897
  • 10 Bhimma R, Rollins N C, Coovadia H M, Adhikari M. Post-dysenteric hemolytic uremic syndrome in children during an epidemic of Shigella dysentery in Kwazulu/Natal.  Pediatr Nephrol. 1997;  11(5) 560-564
  • 11 Mark Taylor C. Enterohaemorrhagic Escherichia coli and Shigella dysenteriae type 1-induced haemolytic uraemic syndrome.  Pediatr Nephrol. 2008;  23(9) 1425-1431
  • 12 O'Brien A D, LaVeck G D, Thompson M R, Formal S B. Production of Shigella dysenteriae type 1-like cytotoxin by Escherichia coli .  J Infect Dis. 1982;  146(6) 763-769
  • 13 Houdouin V, Doit C, Mariani P et al. A pediatric cluster of Shigella dysenteriae serotype 1 diarrhea with hemolytic uremic syndrome in 2 families from France.  Clin Infect Dis. 2004;  38(9) e96-e99
  • 14 Tschäpe H, Prager R, Streckel W, Fruth A, Tietze E, Böhme G. Verotoxinogenic Citrobacter freundii associated with severe gastroenteritis and cases of haemolytic uraemic syndrome in a nursery school: green butter as the infection source.  Epidemiol Infect. 1995;  114(3) 441-450
  • 15 Wickham M E, Lupp C, Mascarenhas M et al. Bacterial genetic determinants of non-O157 STEC outbreaks and hemolytic-uremic syndrome after infection.  J Infect Dis. 2006;  194(6) 819-827
  • 16 Lee S Y, Lee M S, Cherla R P, Tesh V L. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells.  Cell Microbiol. 2008;  10(3) 770-780
  • 17 Siegler R L, Pysher T J, Tesh V L, Taylor Jr F B. Response to single and divided doses of Shiga toxin-1 in a primate model of hemolytic uremic syndrome.  J Am Soc Nephrol. 2001;  12(7) 1458-1467
  • 18 Hertzke D M, Cowan L A, Schoning P, Fenwick B W. Glomerular ultrastructural lesions of idiopathic cutaneous and renal glomerular vasculopathy of greyhounds.  Vet Pathol. 1995;  32(5) 451-459
  • 19 Sauter K A, Melton-Celsa A R, Larkin K, Troxell M L, O'Brien A D, Magun B E. Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody.  Infect Immun. 2008;  76(10) 4469-4478
  • 20 Richardson S E, Rotman T A, Jay V et al. Experimental verocytotoxemia in rabbits.  Infect Immun. 1992;  60(10) 4154-4167
  • 21 Sheoran A S, Chapman-Bonofiglio S, Harvey B R et al. Human antibody against shiga toxin 2 administered to piglets after the onset of diarrhea due to Escherichia coli O157:H7 prevents fatal systemic complications.  Infect Immun. 2005;  73(8) 4607-4613
  • 22 Aldick T, Bielaszewska M, Zhang W et al. Hemolysin from Shiga toxin-negative Escherichia coli O26 strains injures microvascular endothelium.  Microbes Infect. 2007;  9(3) 282-290
  • 23 Wang H, Paton J C, Paton A W. Pathologic changes in mice induced by subtilase cytotoxin, a potent new Escherichia coli AB5 toxin that targets the endoplasmic reticulum.  J Infect Dis. 2007;  196(7) 1093-1101
  • 24 Löfling J C, Paton A W, Varki N M, Paton J C, Varki A. A dietary non-human sialic acid may facilitate hemolytic-uremic syndrome.  Kidney Int. 2009;  76(2) 140-144
  • 25 Ochoa T J, Cleary T G. Epidemiology and spectrum of disease of Escherichia coli O157.  Curr Opin Infect Dis. 2003;  16(3) 259-263
  • 26 Rowe P C, Orrbine E, Lior H Investigators of the Canadian Pediatric Kidney Disease Research Center et al. Risk of hemolytic uremic syndrome after sporadic Escherichia coli O157:H7 infection: results of a Canadian collaborative study.  J Pediatr. 1998;  132(5) 777-782
  • 27 Klein E J, Stapp J R, Clausen C R et al. Shiga toxin-producing Escherichia coli in children with diarrhea: a prospective point-of-care study.  J Pediatr. 2002;  141(2) 172-177
  • 28 Mellmann A, Bielaszewska M, Köck R et al. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli .  Emerg Infect Dis. 2008;  14(8) 1287-1290
  • 29 Alpers K, Werber D, Frank C et al. Sorbitol-fermenting enterohaemorrhagic Escherichia coli O157:H- causes another outbreak of haemolytic uraemic syndrome in children.  Epidemiol Infect. 2009;  137(3) 389-395
  • 30 Oakes R S, Siegler R L, McReynolds M A, Pysher T, Pavia A T. Predictors of fatality in postdiarrheal hemolytic uremic syndrome.  Pediatrics. 2006;  117(5) 1656-1662
  • 31 Proulx F, Sockett P. Prospective surveillance of Canadian children with the haemolytic uraemic syndrome.  Pediatr Nephrol. 2005;  20(6) 786-790
  • 32 Riley L W, Remis R S, Helgerson S D et al. Hemorrhagic colitis associated with a rare Escherichia coli serotype.  N Engl J Med. 1983;  308(12) 681-685
  • 33 Blanco J E, Blanco M, Alonso M P et al. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from human patients: prevalence in Lugo, Spain, from 1992 through 1999.  J Clin Microbiol. 2004;  42(1) 311-319
  • 34 Reiss G, Kunz P, Koin D, Keeffe E B. Escherichia coli O157:H7 infection in nursing homes: review of literature and report of recent outbreak.  J Am Geriatr Soc. 2006;  54(4) 680-684
  • 35 Siegler R, Oakes R. Hemolytic uremic syndrome; pathogenesis, treatment, and outcome.  Curr Opin Pediatr. 2005;  17(2) 200-204
  • 36 De Petris L, Gianviti A, Giordano U, Calzolari A, Tozzi A E, Rizzoni G. Blood pressure in the long-term follow-up of children with hemolytic uremic syndrome.  Pediatr Nephrol. 2004;  19(11) 1241-1244
  • 37 Cobeñas C J, Alconcher L F, Spizzirri A P, Rahman R C. Long-term follow-up of Argentinean patients with hemolytic uremic syndrome who had not undergone dialysis.  Pediatr Nephrol. 2007;  22(9) 1343-1347
  • 38 Garg A X, Clark W F, Salvadori M Walkerton Health Study Investigators et al. Microalbuminuria three years after recovery from Escherichia coli O157 hemolytic uremic syndrome due to municipal water contamination.  Kidney Int. 2005;  67(4) 1476-1482
  • 39 Pollock K G, Duncan E, Cowden J M. Emotional and behavioral changes in parents of children affected by hemolytic-uremic syndrome associated with verocytotoxin-producing Escherichia coli: a qualitative analysis.  Psychosomatics. 2009;  50(3) 263-269
  • 40 Havelaar A H, Van Duynhoven Y T, Nauta M J et al. Disease burden in The Netherlands due to infections with Shiga toxin-producing Escherichia coli O157.  Epidemiol Infect. 2004;  132(3) 467-484
  • 41 Frenzen P D, Drake A, Angulo F J. Emerging Infections Program FoodNet Working Group . Economic cost of illness due to Escherichia coli O157 infections in the United States.  J Food Prot. 2005;  68(12) 2623-2630
  • 42 Ake J A, Jelacic S, Ciol M A et al. Relative nephroprotection during Escherichia coli O157:H7 infections: association with intravenous volume expansion.  Pediatrics. 2005;  115(6) e673-e680
  • 43 Ahn C K, Holt N J, Tarr P I. Shiga-toxin producing Escherichia coli and the hemolytic uremic syndrome: what have we learned in the past 25 years?.  Adv Exp Med Biol. 2009;  634 1-17
  • 44 Liu H C, Anday J K, House S D, Chang S L. Dual effects of morphine on permeability and apoptosis of vascular endothelial cells: morphine potentiates lipopolysaccharide-induced permeability and apoptosis of vascular endothelial cells.  J Neuroimmunol. 2004;  146(1-2) 13-21
  • 45 Bell B P, Griffin P M, Lozano P, Christie D L, Kobayashi J M, Tarr P I. Predictors of hemolytic uremic syndrome in children during a large outbreak of Escherichia coli O157:H7 infections.  Pediatrics. 1997;  100(1) E12
  • 46 Wong C S, Jelacic S, Habeeb R L, Watkins S L, Tarr P I. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections.  N Engl J Med. 2000;  342(26) 1930-1936
  • 47 Araujo M, Welch W J. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide.  Am J Physiol Renal Physiol. 2009;  296(4) F790-F794
  • 48 Buteau C, Proulx F, Chaibou M et al. Leukocytosis in children with Escherichia coli O157:H7 enteritis developing the hemolytic-uremic syndrome.  Pediatr Infect Dis J. 2000;  19(7) 642-647
  • 49 Kawamura N, Yamazaki T, Tamai H. Risk factors for the development of Escherichia coli O157:H7 associated with hemolytic uremic syndrome.  Pediatr Int. 1999;  41(2) 218-222
  • 50 Decaluwe H, Harrison L M, Mariscalco M M et al. Procalcitonin in children with Escherichia coli O157:H7 associated hemolytic uremic syndrome.  Pediatr Res. 2006;  59(4 Pt 1) 579-583
  • 51 Rowe P C, Orrbine E, Lior H, Wells G A, McLaine P N. Diarrhoea in close contacts as a risk factor for childhood haemolytic uraemic syndrome. The CPKDRC co-investigators.  Epidemiol Infect. 1993;  110(1) 9-16
  • 52 Tuttle J, Gomez T, Doyle M P et al. Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties.  Epidemiol Infect. 1999;  122(2) 185-192
  • 53 Cornick N A, Jelacic S, Ciol M A, Tarr P I. Escherichia coli O157:H7 infections: discordance between filterable fecal Shiga toxin and disease outcome.  J Infect Dis. 2002;  186(1) 57-63
  • 54 Ahn C K, Klein E, Tarr P I. Isolation of patients acutely infected with Escherichia coli O157:H7: low-tech, highly effective prevention of hemolytic uremic syndrome.  Clin Infect Dis. 2008;  46(8) 1197-1199
  • 55 Belongia E A, Osterholm M T, Soler J T, Ammend D A, Braun J E, MacDonald K L. Transmission of Escherichia coli O157:H7 infection in Minnesota child day-care facilities.  JAMA. 1993;  269(7) 883-888
  • 56 Werber D, Mason B W, Evans M R, Salmon R L. Preventing household transmission of Shiga toxin-producing Escherichia coli O157 infection: promptly separating siblings might be the key.  Clin Infect Dis. 2008;  46(8) 1189-1196
  • 57 Oakes R S, Kirkham J K, Kirkhamm J K, Nelson R D, Siegler R L. Duration of oliguria and anuria as predictors of chronic renal-related sequelae in post-diarrheal hemolytic uremic syndrome.  Pediatr Nephrol. 2008;  23(8) 1303-1308
  • 58 Rousseau E, Blais N, O'Regan S. Decreased necessity for dialysis with loop diuretic therapy in hemolytic uremic syndrome.  Clin Nephrol. 1990;  34(1) 22-25
  • 59 Ho K M, Sheridan D J. Meta-analysis of frusemide to prevent or treat acute renal failure.  BMJ. 2006;  333(7565) 420
  • 60 Bagshaw S M, Bellomo R, Kellum J A. Oliguria, volume overload, and loop diuretics.  Crit Care Med. 2008;  36(4, Suppl) S172-S178
  • 61 Pape L, Ahlenstiel T, Kreuzer M et al. Early erythropoietin reduced the need for red blood cell transfusion in childhood hemolytic uremic syndrome: a randomized prospective pilot trial.  Pediatr Nephrol. 2009;  24(5) 1061-1064
  • 62 Proulx F, Turgeon J P, Delage G, Lafleur L, Chicoine L. Randomized, controlled trial of antibiotic therapy for Escherichia coli O157:H7 enteritis.  J Pediatr. 1992;  121(2) 299-303
  • 63 Takeda T, Yoshina K-i, Uchida H, Ikeda N, Tanimura M. Early use of fosfomycin for Shiga toxin-producing Escherichia coli O157 infection reduces the risk of hemolytic-uremic syndrome. In: Kaper JB, O'Brien AD Escherichia coli O157:H7 and Other Shiga Toxin-Producing E coli Strains. Washington, DC; ASM Press 1998: 385-387
  • 64 Kurioka T, Yunou Y, Harada H, Kita E. Efficacy of antibiotic therapy for infection with Shiga-like toxin-producing Escherichia coli O157:H7 in mice with protein-calorie malnutrition.  Eur J Clin Microbiol Infect Dis. 1999;  18(8) 561-571
  • 65 Shiomi M, Togawa M, Fujita K, Murata R. Effect of early oral fluoroquinolones in hemorrhagic colitis due to Escherichia coli O157:H7.  Pediatr Int. 1999;  41(2) 228-232
  • 66 Mølbak K, Mead P S, Griffin P M. Antimicrobial therapy in patients with Escherichia coli O157:H7 infection.  JAMA. 2002;  288(8) 1014-1016
  • 67 Johnson S, Taylor C M. What's new in haemolytic uraemic syndrome?.  Eur J Pediatr. 2008;  167(9) 965-971
  • 68 Orth D, Grif K, Zimmerhackl L B, Würzner R. Prevention and treatment of enterohemorrhagic Escherichia coli infections in humans.  Expert Rev Anti Infect Ther. 2008;  6(1) 101-108
  • 69 Slutsker L, Ries A A, Maloney K, Wells J G, Greene K D, Griffin P M. A nationwide case-control study of Escherichia coli O157:H7 infection in the United States.  J Infect Dis. 1998;  177(4) 962-966
  • 70 Walterspiel J N, Ashkenazi S, Morrow A L, Cleary T G. Effect of subinhibitory concentrations of antibiotics on extracellular Shiga-like toxin I.  Infection. 1992;  20(1) 25-29
  • 71 Bitzan M, Müller-Wiefel D E, Schwarzkopf A, Karch H. The role of antibiotics in the management of verotoxin-associated hemolytic anemia syndromes [in German].  Immun Infekt. 1992;  20(5) 168-172
  • 72 Grif K, Dierich M P, Karch H, Allerberger F. Strain-specific differences in the amount of Shiga toxin released from enterohemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents.  Eur J Clin Microbiol Infect Dis. 1998;  17(11) 761-766
  • 73 Zhang X, McDaniel A D, Wolf L E, Keusch G T, Waldor M K, Acheson D W. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice.  J Infect Dis. 2000;  181(2) 664-670
  • 74 Safdar N, Said A, Gangnon R E, Maki D G. Risk of hemolytic uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 enteritis: a meta-analysis.  JAMA. 2002;  288(8) 996-1001
  • 75 Zhang Q, Donohue-Rolfe A, Krautz-Peterson G et al. Gnotobiotic piglet infection model for evaluating the safe use of antibiotics against Escherichia coli O157:H7 infection.  J Infect Dis. 2009;  199(4) 486-493
  • 76 Benigni A, Boccardo P, Noris M, Remuzzi G, Siegler R L. Urinary excretion of platelet-activating factor in haemolytic uraemic syndrome.  Lancet. 1992;  339(8797) 835-836
  • 77 Karpman D, Andreasson A, Thysell H, Kaplan B S, Svanborg C. Cytokines in childhood hemolytic uremic syndrome and thrombotic thrombocytopenic purpura.  Pediatr Nephrol. 1995;  9(6) 694-699
  • 78 Inward C D, Varagunam M, Adu D, Milford D V, Taylor C M. Cytokines in haemolytic uraemic syndrome associated with verocytotoxin-producing Escherichia coli infection.  Arch Dis Child. 1997;  77(2) 145-147
  • 79 Bitzan M M, Wang Y, Lin J, Marsden P A. Verotoxin and ricin have novel effects on preproendothelin-1 expression but fail to modify nitric oxide synthase (ecNOS) expression and NO production in vascular endothelium.  J Clin Invest. 1998;  101(2) 372-382
  • 80 Westerholt S, Pieper A K, Griebel M, Volk H D, Hartung T, Oberhoffer R. Characterization of the cytokine immune response in children who have experienced an episode of typical hemolytic-uremic syndrome.  Clin Diagn Lab Immunol. 2003;  10(6) 1090-1095
  • 81 Siegler R L, Pysher T J, Tesh V L, Noris M, Cassis P, Taylor Jr F B. Reduced nitric oxide bioavailability in a baboon model of Shiga toxin mediated hemolytic uremic syndrome (HUS).  Ren Fail. 2005;  27(5) 635-641
  • 82 Bombeli T, Karsan A, Tait J F, Harlan J M. Apoptotic vascular endothelial cells become procoagulant.  Blood. 1997;  89(7) 2429-2442
  • 83 Nestoridi E, Kushak R I, Duguerre D, Grabowski E F, Ingelfinger J R. Up-regulation of tissue factor activity on human proximal tubular epithelial cells in response to Shiga toxin.  Kidney Int. 2005;  67(6) 2254-2266
  • 84 Nestoridi E, Tsukurov O, Kushak R I, Ingelfinger J R, Grabowski E F. Shiga toxin enhances functional tissue factor on human glomerular endothelial cells: implications for the pathophysiology of hemolytic uremic syndrome.  J Thromb Haemost. 2005;  3(4) 752-762
  • 85 Simoncini S, Njock M S, Robert S et al. TRAIL/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation.  Circ Res. 2009;  104(8) 943-951
  • 86 Chandler W L, Jelacic S, Boster D R et al. Prothrombotic coagulation abnormalities preceding the hemolytic-uremic syndrome.  N Engl J Med. 2002;  346(1) 23-32
  • 87 Richardson S E, Karmali M A, Becker L E, Smith C R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections.  Hum Pathol. 1988;  19(9) 1102-1108
  • 88 Michael M, Elliott E J, Ridley G F, Hodson E M, Craig J C. Interventions for haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura.  Cochrane Database Syst Rev. 2009;  (1) CD003595
  • 89 Michael M, Elliott E J, Craig J C, Ridley G, Hodson E M. Interventions for hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: a systematic review of randomized controlled trials.  Am J Kidney Dis. 2009;  53(2) 259-272
  • 90 Vitacco M, Sanchez Avalos J, Gianantonio C A. Heparin therapy in the hemolytic-uremic syndrome.  J Pediatr. 1973;  83(2) 271-275
  • 91 Loirat C, Beaufils F, Sonsino E et al. Treatment of childhood hemolytic-uremic syndrome with urokinase. Cooperative controlled trial [in French].  Arch Fr Pediatr. 1984;  41(1) 15-19
  • 92 Van Damme-Lombaerts R, Proesmans W, Van Damme B et al. Heparin plus dipyridamole in childhood hemolytic-uremic syndrome: a prospective, randomized study.  J Pediatr. 1988;  113(5) 913-918
  • 93 Loirat C, Sonsino E, Hinglais N, Jais J P, Landais P, Fermanian J. The French Society of Paediatric Nephrology . Treatment of the childhood haemolytic uraemic syndrome with plasma. A multicentre randomized controlled trial.  Pediatr Nephrol. 1988;  2(3) 279-285
  • 94 Rizzoni G, Claris-Appiani A, Edefonti A et al. Plasma infusion for hemolytic-uremic syndrome in children: results of a multicenter controlled trial.  J Pediatr. 1988;  112(2) 284-290
  • 95 Perez N, Spizzirri F, Rahman R, Suarez A, Larrubia C, Lasarte P. Steroids in the hemolytic uremic syndrome.  Pediatr Nephrol. 1998;  12(2) 101-104
  • 96 Trachtman H, Cnaan A, Christen E Investigators of the HUS-SYNSORB Pk Multicenter Clinical Trial et al. Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial.  JAMA. 2003;  290(10) 1337-1344
  • 97 Siegler R L, Pysher T J, Tesh V L, Denkers N D, Taylor F B. Prophylactic heparinization is ineffective in a primate model of hemolytic uremic syndrome.  Pediatr Nephrol. 2002;  17(12) 1053-1058
  • 98 Landau D, Shalev H, Levy-Finer G, Polonsky A, Segev Y, Katchko L. Familial hemolytic uremic syndrome associated with complement factor H deficiency.  J Pediatr. 2001;  138(3) 412-417
  • 99 Licht C, Weyersberg A, Heinen S et al. Successful plasma therapy for atypical hemolytic uremic syndrome caused by factor H deficiency owing to a novel mutation in the complement cofactor protein domain 15.  Am J Kidney Dis. 2005;  45(2) 415-421
  • 100 Lapeyraque A L, Wagner E, Phan V et al. Efficacy of plasma therapy in atypical hemolytic uremic syndrome with complement factor H mutations.  Pediatr Nephrol. 2008;  23(8) 1363-1366
  • 101 Ariceta G, Besbas N, Johnson S European Paediatric Study Group for HUS et al. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome.  Pediatr Nephrol. 2009;  24(4) 687-696
  • 102 De S, Waters A M, Segal A O, Trautmann A, Harvey E A, Licht C. Severe atypical HUS caused by CFH S1191L-case presentation and review of treatment options.  Pediatr Nephrol. 2010;  25(1) 97-104
  • 103 Armstrong G D, Rowe P C, Goodyer P et al.. A phase I study of chemically synthesized verotoxin (Shiga-like toxin) Pk-trisaccharide receptors attached to chromosorb for preventing hemolytic-uremic syndrome.  J Infect Dis. 1995;  171(4) 1042-1045
  • 104 Nishikawa K, Matsuoka K, Watanabe M et al. Identification of the optimal structure required for a Shiga toxin neutralizer with oriented carbohydrates to function in the circulation.  J Infect Dis. 2005;  191(12) 2097-2105
  • 105 Bitzan M, Ludwig K, Klemt M, König H, Büren J, Müller-Wiefel D E. The role of Escherichia coli O 157 infections in the classical (enteropathic) haemolytic uraemic syndrome: results of a Central European, multicentre study.  Epidemiol Infect. 1993;  110(2) 183-196
  • 106 Ahmed A, Li J, Shiloach Y, Robbins J B, Szu S C. Safety and immunogenicity of Escherichia coli O157 O-specific polysaccharide conjugate vaccine in 2–5-year-old children.  J Infect Dis. 2006;  193(4) 515-521
  • 107 Wen S X, Teel L D, Judge N A, O'Brien A D. A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2.  Proc Natl Acad Sci U S A. 2006;  103(18) 7082-7087
  • 108 Gao X, Cai K, Shi J et al. Immunogenicity of a novel Stx2B-Stx1B fusion protein in a mice model of enterohemorrhagic Escherichia coli O157:H7 infection.  Vaccine. 2009;  27(14) 2070-2076
  • 109 Gu J, Liu Y, Yu S et al. Enterohemorrhagic Escherichia coli trivalent recombinant vaccine containing EspA, intimin and Stx2 induces strong humoral immune response and confers protection in mice.  Microbes Infect. 2009;  11(10-11) 835-841
  • 110 Bentancor L V, Bilen M, Brando R J et al. A DNA vaccine encoding the enterohemorrhagic Escherichia coli Shiga-like toxin 2 A2 and B subunits confers protective immunity to Shiga toxin challenge in the murine model.  Clin Vaccine Immunol. 2009;  16(5) 712-718
  • 111 Kitov P I, Sadowska J M, Mulvey G et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands.  Nature. 2000;  403(6770) 669-672
  • 112 Mulvey G L, Marcato P, Kitov P I, Sadowska J, Bundle D R, Armstrong G D. Assessment in mice of the therapeutic potential of tailored, multivalent Shiga toxin carbohydrate ligands.  J Infect Dis. 2003;  187(4) 640-649
  • 113 Watanabe M, Matsuoka K, Kita E et al. Oral therapeutic agents with highly clustered globotriose for treatment of Shiga toxigenic Escherichia coli infections.  J Infect Dis. 2004;  189(3) 360-368
  • 114 Migita M, Mizukami E, Gunji Y P. Flexibility in starfish behavior by multi-layered mechanism of self-organization.  Biosystems. 2005;  82(2) 107-115
  • 115 Yamada Y, Miura Y, Sakaki A, Yoshida T, Kobayashi K. Design of multifunctional peptides expressing both antimicrobial activity and shiga toxin neutralization activity.  Bioorg Med Chem. 2006;  14(1) 77-82
  • 116 Bitzan M. Treatment options for HUS secondary to Escherichia coli O157:H7.  Kidney Int Suppl. 2009;  (112) S62-S66
  • 117 Cavagnaro F, Vogel A, Ronco R, Rodríguez J I. Continuous hemofiltration in patients with abdominal complications of hemolytic uremic syndrome [in Spanish].  Rev Med Chil. 2002;  130(7) 768-772
  • 118 Kavanagh D, Richards A, Atkinson J. Complement regulatory genes and hemolytic uremic syndromes.  Annu Rev Med. 2008;  59 293-309
  • 119 Lhotta K, Janecke A R, Scheiring J et al. A large family with a gain-of-function mutation of complement C3 predisposing to atypical hemolytic uremic syndrome, microhematuria, hypertension and chronic renal failure.  Clin J Am Soc Nephrol. 2009;  4(8) 1356-1362
  • 120 Chatelet V, Frémeaux-Bacchi V, Lobbedez T, Ficheux M, Hurault de Ligny B. Safety and long-term efficacy of eculizumab in a renal transplant patient with recurrent atypical hemolytic-uremic syndrome.  Am J Transplant. 2009;  9(11) 2644-2645
  • 121 Nürnberger J, Philipp T, Witzke O et al. Eculizumab for atypical hemolytic-uremic syndrome.  N Engl J Med. 2009;  360(5) 542-544
  • 122 Banda N K, Levitt B, Glogowska M J et al. Targeted inhibition of the complement alternative pathway with complement receptor 2 and factor H attenuates collagen antibody-induced arthritis in mice.  J Immunol. 2009;  183(9) 5928-5937
  • 123 Nguyen T C, Stegmayr B, Busund R, Bunchman T E, Carcillo J A. Plasma therapies in thrombotic syndromes.  Int J Artif Organs. 2005;  28(5) 459-465
  • 124 Iijima K, Kamioka I, Nozu K. Management of diarrhea-associated hemolytic uremic syndrome in children.  Clin Exp Nephrol. 2008;  12(1) 16-19
  • 125 Tarr P I. Shiga toxin-associated hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: distinct mechanisms of pathogenesis.  Kidney Int Suppl. 2009;  (112) S29-S32
  • 126 Dundas S, Murphy J, Soutar R L, Jones G A, Hutchinson S J, Todd W T. Effectiveness of therapeutic plasma exchange in the 1996 Lanarkshire Escherichia coli O157:H7 outbreak.  Lancet. 1999;  354(9187) 1327-1330
  • 127 Shaz B H, Linenberger M L, Bandarenko N et al. Category IV indications for therapeutic apheresis: ASFA fourth special issue.  J Clin Apher. 2007;  22(3) 176-180
  • 128 Garg A X, Suri R S, Barrowman N et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression.  JAMA. 2003;  290(10) 1360-1370
  • 129 Edey M M, Mead P A, Saunders R E et al. Association of a factor H mutation with hemolytic uremic syndrome following a diarrheal illness.  Am J Kidney Dis. 2008. 51(3) 487-490
  • 130 Karpac C A, Li X, Terrell D R et al. Sporadic bloody diarrhoea-associated thrombotic thrombocytopenic purpura-haemolytic uraemic syndrome: an adult and paediatric comparison.  Br J Haematol. 2008;  141(5) 696-707
  • 131 Orth D, Khan A B, Naim A et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome.  J Immunol. 2009;  182(10) 6394-6400
  • 132 Thurman J M, Marians R, Emlen W et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome.  Clin J Am Soc Nephrol. 2009;  4(12) 1920-1924
  • 133 Strockbine N A, Marques L R, Holmes R K, O'Brien A D. Characterization of monoclonal antibodies against Shiga-like toxin from Escherichia coli .  Infect Immun. 1985;  50(3) 695-700
  • 134 Perera L P, Marques L R, O'Brien A D. Isolation and characterization of monoclonal antibodies to Shiga-like toxin II of enterohemorrhagic Escherichia coli and use of the monoclonal antibodies in a colony enzyme-linked immunosorbent assay.  J Clin Microbiol. 1988;  26(10) 2127-2131
  • 135 Dowling T C, Chavaillaz P A, Young D G et al. Phase 1 safety and pharmacokinetic study of chimeric murine-human monoclonal antibody c alpha Stx2 administered intravenously to healthy adult volunteers.  Antimicrob Agents Chemother. 2005;  49(5) 1808-1812
  • 136 Nakao H, Kiyokawa N, Fujimoto J, Yamasaki S, Takeda T. Monoclonal antibody to Shiga toxin 2 which blocks receptor binding and neutralizes cytotoxicity.  Infect Immun. 1999;  67(11) 5717-5722
  • 137 Nakao H, Kataoka C, Kiyokawa N, Fujimoto J, Yamasaki S, Takeda T. Monoclonal antibody to shiga toxin 1, which blocks receptor binding and neutralizes cytotoxicity.  Microbiol Immunol. 2002;  46(11) 777-780
  • 138 Kimura T, Co M S, Vasquez M et al. Development of humanized monoclonal antibody TMA-15 which neutralizes Shiga toxin 2.  Hybrid Hybridomics. 2002;  21(3) 161-168
  • 139 Yamagami S, Motoki M, Kimura T et al. Efficacy of postinfection treatment with anti-Shiga toxin (Stx) 2 humanized monoclonal antibody TMA-15 in mice lethally challenged with Stx-producing Escherichia coli .  J Infect Dis. 2001;  184(6) 738-742
  • 140 Teijin America, Inc. Strategy, issues, and alternative approaches in development of a treatment for HUS prevention .Joint meeting of the Anti-Infective Drugs Advisory Committee and the Pediatric Advisory Committee of the US Food and Drug Administration (FDA). http://Available at: www.fda.gov/ohrms/dockets/ac/07/slides/2007-4286s1-08-teijin-brookman-cato-peterson_files/frame.htm Accessed July 8, 2010
  • 141 López E L, Contrini M M, Glatstein E et al. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody against Shiga-like toxin 2 in healthy adults and pediatric patients infected with Shiga-like toxin-producing Escherichia coli .  Antimicrob Agents Chemother. 2010;  54 239-243
  • 142 Mukherjee J, Chios K, Fishwild D et al. Human Stx2-specific monoclonal antibodies prevent systemic complications of Escherichia coli O157:H7 infection.  Infect Immun. 2002;  70(2) 612-619
  • 143 Akiyoshi D E, Rich C M, O'Sullivan-Murphy S et al. Characterization of a human monoclonal antibody against Shiga toxin 2 expressed in Chinese hamster ovary cells.  Infect Immun. 2005;  73(7) 4054-4061
  • 144 Sheoran A S, Chapman S, Singh P, Donohue-Rolfe A, Tzipori S. Stx2-specific human monoclonal antibodies protect mice against lethal infection with Escherichia coli expressing Stx2 variants.  Infect Immun. 2003;  71(6) 3125-3130
  • 145 Tzipori S, Sheoran A, Akiyoshi D, Donohue-Rolfe A, Trachtman H. Antibody therapy in the management of Shiga toxin-induced hemolytic uremic syndrome.  Clin Microbiol Rev. 2004;  17(4) 926-941
  • 146 Inoue K, Itoh K, Nakao H, Takeda T, Suzuki T. Characterization of a Shiga toxin 1-neutralizing recombinant Fab fragment isolated by phage display system.  Tohoku J Exp Med. 2004;  203(4) 295-303
  • 147 Ma Y, Mao X, Li J et al. Engineering an anti-Stx2 antibody to control severe infections of EHEC O157:H7.  Immunol Lett. 2008;  121(2) 110-115
  • 148 Liu X Y, Pop L M, Vitetta E S. Engineering therapeutic monoclonal antibodies.  Immunol Rev. 2008;  222 9-27
  • 149 Smith M J, Melton-Celsa A R, Sinclair J F, Carvalho H M, Robinson C M, O'Brien A D. Monoclonal antibody 11E10, which neutralizes shiga toxin type 2 (Stx2), recognizes three regions on the Stx2 A subunit, blocks the enzymatic action of the toxin in vitro, and alters the overall cellular distribution of the toxin.  Infect Immun. 2009;  77(7) 2730-2740
  • 150 Smith M J, Carvalho H M, Melton-Celsa A R, O'Brien A D. The 13C4 monoclonal antibody that neutralizes Shiga toxin Type 1 (Stx1) recognizes three regions on the Stx1 B subunit and prevents Stx1 from binding to its eukaryotic receptor globotriaosylceramide.  Infect Immun. 2006;  74(12) 6992-6998
  • 151 Karmali M A. Prospects for preventing serious systemic toxemic complications of Shiga toxin-producing Escherichia coli infections using Shiga toxin receptor analogues.  J Infect Dis. 2004;  189(3) 355-359

Martin BitzanM.D. 

Division of Nephrology, Montreal Children's Hospital

2300 rue Tupper E-222, Montreal, Quebec, Canada H3H 1P3

eMail: martin.bitzan@mcgill.ca

eMail: mbitzan@gmail.com