RSS-Feed abonnieren
DOI: 10.1055/s-0030-1263122
© Georg Thieme Verlag KG Stuttgart · New York
Dietary Folic Acid Activates AMPK and Improves Insulin Resistance and Hepatic Inflammation in Dietary Rodent Models of the Metabolic Syndrome
Publikationsverlauf
received 13.01.2010
accepted 22.07.2010
Publikationsdatum:
27. August 2010 (online)

Abstract
The AMP activated kinase plays an important role in metabolic control, and pharmacologic enhancement of AMPK activity is used to improve insulin resistance. We hypothesized that high dose of folic acid supplementation might improve insulin sensitivity and hepatic inflammation and examined this by a dietary intervention in (a) the high fat fed rat model of the metabolic syndrome, which shows sole hepatic steatosis as well as (b) in rats fed with a high cholesterol, high cholate diet inducing nonalcoholic steatohepatitis (NASH). Male Wistar rats were fed with folic acid supplemented (40 mg/kg) high fat diet [based on lard, fat content 25% (wt/wt)] or NASH inducing diet (containing 15% fat, 1.25% cholesterol, 0.5% sodium cholate). Metabolic profiling was performed by measuring the animals’ visceral fat pads, fasting plasma glucose, insulin, and adipokines as well as in vivo insulin tolerance tests. Hepatic steatosis and inflammation were analyzed semiquantitatively by histological analysis. Folic acid supplementation reduced visceral obesity and improved plasma adiponectin levels. In vivo insulin sensitivity was improved, and in HF-FA rats folic acid increased activation of hepatic AMPK. Further, folic acid supplementation improved hepatic inflammation in animals fed with NASH-inducing diet. Dietary folic acid improved parameters of insulin resistance and hepatic inflammation in rodent models. This might be due to an increased AMK activation.
Key words
folate - nonalcoholic steatohepatitis - insulin action
References
- 1
Dandona P, Aljada A, Bandyopadhyay A.
Inflammation: the link between insulin resistance, obesity and diabetes.
Trends Immunol.
2004;
25
4-7
MissingFormLabel
- 2
Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI.
Impaired mitochondrial activity in the insulin-resistant offspring of patients with
type 2 diabetes.
N Engl J Med.
2004;
350
664-671
MissingFormLabel
- 3
Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, Ravussin E, Smith SR.
Role of adiponectin in human skeletal muscle bioenergetics.
Cell Metab.
2006;
4
75-87
MissingFormLabel
- 4
Hardie DG, Carling D.
The AMP-activated protein kinase – fuel gauge of the mammalian cell?.
Eur J Biochem.
1997;
246
259-273
MissingFormLabel
- 5
Ruderman NB, Saha AK, Kraegen EW.
Malonyl CoA, AMP-activated protein kinase, and adiposity.
Endocrinology.
2003;
144
5166-5171
MissingFormLabel
- 6
Lefort N, St Amand E, Morasse S, Cote CH, Marette A.
The alpha-subunit of AMPK is essential for submaximal contraction-mediated glucose
transport in skeletal muscle in vitro.
Am J Physiol Endocrinol Metab.
2008;
295
E1447-E1454
MissingFormLabel
- 7
Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK, Lee CH, Choi HS.
Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent
regulation of the orphan nuclear receptor SHP.
Diabetes.
2008;
57
306-314
MissingFormLabel
- 8
Corton JM, Gillespie JG, Hawley SA, Hardie DG.
5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated
protein kinase in intact cells?.
Eur J Biochem.
1995;
229
558-565
MissingFormLabel
- 9
Salt IP, Connell JM, Gould GW.
5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated
glucose transport in 3T3-L1 adipocytes.
Diabetes.
2000;
49
1649-1656
MissingFormLabel
- 10
Iglesias MA, Ye JM, Frangioudakis G, Saha AK, Tomas E, Ruderman NB, Cooney GJ, Kraegen EW.
AICAR administration causes an apparent enhancement of muscle and liver insulin action
in insulin-resistant high-fat-fed rats.
Diabetes.
2002;
51
2886-2894
MissingFormLabel
- 11
Bollheimer LC, Buettner R, Kullmann A, Kullmann F.
Folate and its preventive potential in colorectal carcinogenesis. How strong is the
biological and epidemiological evidence?.
Crit Rev Oncol Hematol.
2005;
55
13-36
MissingFormLabel
- 12
Uygun A, Kadayifci A, Isik AT, Ozgurtas T, Deveci S, Tuzun A, Yesilova Z, Gulsen M, Dagalp K.
Metformin in the treatment of patients with non-alcoholic steatohepatitis.
Aliment Pharmacol Ther.
2004;
19
537-544
MissingFormLabel
- 13
Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ.
Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor
activation in response to an atherogenic diet in mice.
J Clin Invest.
1993;
91
2572-2579
MissingFormLabel
- 14
Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y, Miyamoto K, Kaneko S.
Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet.
Hepatology.
2007;
46
1392-1403
MissingFormLabel
- 15
Nishina PM, Verstuyft J, Paigen B.
Synthetic low and high fat diets for the study of atherosclerosis in the mouse.
J Lipid Res.
1990;
31
859-869
MissingFormLabel
- 16
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC.
Homeostasis model assessment: insulin resistance and beta-cell function from fasting
plasma glucose and insulin concentrations in man.
Diabetologia.
1985;
28
412-419
MissingFormLabel
- 17
Buettner R, Newgard CB, Rhodes CJ, O’Doherty RM.
Correction of diet-induced hyperglycemia, hyperinsulinemia, and skeletal muscle insulin
resistance by moderate hyperleptinemia.
Am J Physiol Endocrinol Metab.
2000;
278
E563-E569
MissingFormLabel
- 18
Achon M, Alonso-Aperte E, Ubeda N, Varela-Moreiras G.
Supranormal dietary folic acid supplementation: effects on methionine metabolism in
weanling rats.
Br J Nutr.
2007;
98
490-496
MissingFormLabel
- 19
Achon M, Alonso-Aperts E, Varela-Moreiras G.
High dietary folate supplementation: effects on diet utilization and methionine metabolism
in aged rats.
J Nutr Health Aging.
2002;
6
51-54
MissingFormLabel
- 20
Achon M, Reyes L, Alonso-Aperte E, Ubeda N, Varela-Moreiras G.
High dietary folate supplementation affects gestational development and dietary protein
utilization in rats.
J Nutr.
1999;
129
1204-1208
MissingFormLabel
- 21
Baggott JE, Vaughn WH, Juliana MM, Eto I, Krumdieck CL, Grubbs CJ.
Effects of folate deficiency and supplementation on methylnitrosourea-induced rat
mammary tumors.
J Natl Cancer Inst.
1992;
84
1740-1744
MissingFormLabel
- 22
Monzillo LU, Hamdy O.
Evaluation of insulin sensitivity in clinical practice and in research settings.
Nutr Rev.
2003;
61
397-412
MissingFormLabel
- 23
Buettner R, Ottinger I, Gerhardt-Salbert C, Wrede CE, Scholmerich J, Bollheimer LC.
Antisense oligonucleotides against the lipid phosphatase SHIP2 improve muscle insulin
sensitivity in a dietary rat model of the metabolic syndrome.
Am J Physiol Endocrinol Metab.
2007;
292
E1871-E1878
MissingFormLabel
- 24
Buettner R, Scholmerich J, Bollheimer LC.
High-fat diets: modeling the metabolic disorders of human obesity in rodents.
Obesity (Silver Spring).
2007;
15
798-808
MissingFormLabel
- 25
Mangoni AA, Sherwood RA, Asonganyi B, Swift CG, Thomas S, Jackson SH.
Short-term oral folic acid supplementation enhances endothelial function in patients
with type 2 diabetes.
Am J Hypertens.
2005;
18
220-226
MissingFormLabel
- 26
Title LM, Ur E, Giddens K, McQueen MJ, Nassar BA.
Folic acid improves endothelial dysfunction in type 2 diabetes – an effect independent
of homocysteine-lowering.
Vasc Med.
2006;
11
101-109
MissingFormLabel
- 27
Kazerooni T, Asadi N, Dehbashi S, Zolghadri J.
Effect of folic acid in women with and without insulin resistance who have hyperhomocysteinemic
polycystic ovary syndrome.
Int J Gynaecol Obstet.
2008;
101
156-160
MissingFormLabel
- 28
Solini A, Santini E, Ferrannini E.
Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory
markers in overweight subjects.
Int J Obes (Lond).
2006;
30
1197-1202
MissingFormLabel
- 29
Child DF, Hudson PR, Jones H, Davies GK, De P, Mukherjee S, Brain AM, Williams CP, Harvey JN.
The effect of oral folic acid on glutathione, glycaemia and lipids in Type 2 diabetes.
Diabetes Nutr Metab.
2004;
17
95-102
MissingFormLabel
- 30
Daval M, Foufelle F, Ferre P.
Functions of AMP-activated protein kinase in adipose tissue.
J Physiol.
2006;
574
55-62
MissingFormLabel
- 31
Cuthbertson DJ, Babraj JA, Mustard KJ, Towler MC, Green KA, Wackerhage H, Leese GP, Baar K, Thomason-Hughes M, Sutherland C, Hardie DG, Rennie MJ.
5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside acutely stimulates skeletal
muscle 2-deoxyglucose uptake in healthy men.
Diabetes.
2007;
56
2078-2084
MissingFormLabel
- 32
Kim WH, Lee JW, Suh YH, Lee HJ, Lee SH, Oh YK, Gao B, Jung MH.
AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in
pancreatic beta-cell apoptosis.
Cell Signal.
2007;
19
791-805
MissingFormLabel
- 33
Matte C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Goncalves CA, Erdtmann B, Salvador M, Wyse AT.
Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage
in brain and blood of rats: Protective effect of folic acid.
Neurochem Int.
2009;
54
7-13
MissingFormLabel
- 34
Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ, Kass DA.
High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled
to maintenance of high-energy phosphates and reduces postreperfusion injury.
Circulation.
2008;
117
1810-1819
MissingFormLabel
- 35
Charatcharoenwitthaya P, Levy C, Angulo P, Keach J, Jorgensen R, Lindor KD.
Open-label pilot study of folic acid in patients with nonalcoholic steatohepatitis.
Liver Int.
2007;
27
220-226
MissingFormLabel
- 36
Kim YI.
Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies.
Environ Mol Mutagen.
2004;
44
10-25
MissingFormLabel
Correspondence
R. BuettnerMD
Department of Internal
Medicine I
University Medical Center
Regensburg
Franz-Josef-Strauss-Allee 11
93042 Regensburg
Germany
Telefon: +49/941/9447 003
Fax: +49/941/9447 004
eMail: roland.buettner@klinik.uni-regensburg.de