Facial Plast Surg 2010; 26(5): 396-404
DOI: 10.1055/s-0030-1265019
© Thieme Medical Publishers

Septal Cartilage Tissue Engineering: New Horizons

Jacqueline J. Greene1 , 2 , Deborah Watson1 , 2 , 3
  • 1School of Medicine, University of California, San Diego, La Jolla, California
  • 2Cartilage Tissue Engineering Laboratory, Department of Bioengineering, University of California, San Diego, La Jolla, California
  • 3Division of Otolaryngology–Head and Neck Surgery, Facial Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, California
Further Information

Publication History

Publication Date:
17 September 2010 (online)

ABSTRACT

Cartilage tissue engineering is a dynamically changing field that has the potential to address some of the tissue repair challenges seen in nasal and craniofacial reconstructive surgeries. The scope of the problem includes limited autologous tissue availability, donor site morbidity associated with the harvesting of these tissue grafts, and the risk of an immune reaction to allogenic or synthetic implants that might be used as alternatives. Current tissue engineering strategies involve harvesting a small biopsy specimen from a patient and then isolating chondrocytes through enzymatic digestion of the extracellular matrix. These isolated chondrocytes can be expanded in monolayer and reseeded into a three-dimensional scaffold that could potentially be used as autologous surgical grafts. Using cell-expansion techniques, it would be feasible to generate abundant amounts of cartilage in defined shapes and sizes. The ideal tissue-engineered cartilage would resemble native tissue in terms of its biochemical, structural, and metabolic properties so that it could restore stability, function, and contour to the damaged or defective facial region. In this article, emerging technology and major challenges are described to highlight recent advances and overall trends within septal cartilage tissue engineering.

REFERENCES

  • 1 Vacanti J P. Beyond transplantation. Third annual Samuel Jason Mixter lecture.  Arch Surg. 1988;  123 545-549
  • 2 Vacanti C A, Vacanti J P. Functional organ replacement: the new technology of tissue engineering.  Surg Technol Int. 1991;  1 43-49
  • 3 Langer R, Vacanti J P. Tissue engineering.  Science. 1993;  260 920-926
  • 4 Tardy Jr M E, Denneny III J, Fritsch M H. The versatile cartilage autograft in reconstruction of the nose and face.  Laryngoscope. 1985;  95 523-533
  • 5 Komender J, Marczynski W, Tylman D, Malczewska H, Komender A, Sladowski D. Preserved tissue allografts in reconstructive surgery.  Cell Tissue Bank. 2001;  2 103-112
  • 6 Lovice D B, Mingrone M D, Toriumi D M. Grafts amd implants in rhinoplasty and nasal reconstruction.  Otolaryngol Clin North Am. 1999;  32 113-141
  • 7 Boenisch M, Nolst Trenité G J. Reconstruction of the nasal septum using polydioxanone plate.  Arch Facial Plast Surg. 2010;  12 4-10
  • 8 Kim S W, Dobratz E J, Ballert J A, Voglewede A T, Park S S. Subcutaneous implants coated with tissue-engineered cartilage.  Laryngoscope. 2009;  119 62-66
  • 9 Sajjadian A, Rubinstein R, Naghshineh N. Current status of grafts and implants in rhinoplasty: part I. Autologous grafts.  Plast Reconstr Surg. 2010;  125 40e-49e
  • 10 Richmon J D, Sage A B, Wong V W et al.. Tensile biomechanical properties of human nasal septal cartilage.  Am J Rhinol. 2005;  19 617-622
  • 11 Guo B Y, Liao D H, Li X Y, Zeng Y J, Yang Q H. Age and gender related changes in biomechanical properties of healthy human costal cartilage.  Clin Biomech (Bristol, Avon). 2007;  22 292-297
  • 12 Mainil-Varlet P, Aigner T, Brittberg M International Cartilage Repair Society et al. Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS).  J Bone Joint Surg Am. 2003;  85(Suppl 2) 45-57
  • 13 Ross M H, Kaye G I, Pawlina W. Histology: A Text and Atlas. 4th ed. Philadelphia, PA; Lippincott Williams & Wilkins 2003: xv, 875
  • 14 Ross M HPW. Histology: A Text and Atlas. 5th ed. Baltimore, MD; Lippincott Williams & Wilkins 2006
  • 15 Poole C A, Flint M H, Beaumont B W. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages.  J Orthop Res. 1987;  5 509-522
  • 16 Hughes L C, Archer C W, ap Gwynn I. The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review.  Eur Cell Mater. 2005;  9 68-84
  • 17 Eyre D. Collagen of articular cartilage.  Arthritis Res. 2002;  4 30-35
  • 18 Rodriguez A, Cao Y L, Ibarra C et al.. Characteristics of cartilage engineered from human pediatric auricular cartilage.  Plast Reconstr Surg. 1999;  103 1111-1119
  • 19 Safronova E E, Borisova N V, Mezentseva S V, Krasnopol'skaya K D. Characteristics of the macromolecular components of the extracellular matrix in human hyaline cartilage at different stages of ontogenesis.  Biomed Sci. 1991;  2 162-168
  • 20 Bleys R L, Popko M, De Groot J W, Huizing E H. Histological structure of the nasal cartilages and their perichondrial envelope. II. The perichondrial envelope of the septal and lobular cartilage.  Rhinology. 2007;  45 153-157
  • 21 Ustünel I, Cayli S, Güney K et al.. Immunohistochemical distribution patterns of collagen type II, chondroitin 4-sulfate, laminin and fibronectin in human nasal septal cartilage.  Acta Histochem. 2003;  105 109-114
  • 22 Kafienah W, Jakob M, Démarteau O et al.. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes.  Tissue Eng. 2002;  8 817-826
  • 23 Naumann A, Dennis J E, Aigner J et al.. Tissue engineering of autologous cartilage grafts in three-dimensional in vitro macroaggregate culture system.  Tissue Eng. 2004;  10 1695-1706
  • 24 Tay A G, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes.  Tissue Eng. 2004;  10 762-770
  • 25 Chai Y, Maxson Jr R E. Recent advances in craniofacial morphogenesis.  Dev Dyn. 2006;  235 2353-2375
  • 26 Johns D E, Wong M E, Athanasiou K A. Clinically relevant cell sources for TMJ disc engineering.  J Dent Res. 2008;  87 548-552
  • 27 Benya P D, Shaffer J D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels.  Cell. 1982;  30 215-224
  • 28 Goessler U R, Bugert P, Bieback K et al.. In vitro analysis of differential expression of collagens, integrins, and growth factors in cultured human chondrocytes.  Otolaryngol Head Neck Surg. 2006;  134 510-515
  • 29 Homicz M R, Chia S H, Schumacher B L et al.. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture.  Laryngoscope. 2003;  113 25-32
  • 30 Chia S H, Schumacher B L, Klein T J et al.. Tissue-engineered human nasal septal cartilage using the alginate-recovered-chondrocyte method.  Laryngoscope. 2004;  114 38-45
  • 31 Homicz M R, Schumacher B L, Sah R L, Watson D. Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition.  Otolaryngol Head Neck Surg. 2002;  127 398-408
  • 32 Chia S H, Homicz M R, Schumacher B L et al.. Characterization of human nasal septal chondrocytes cultured in alginate.  J Am Coll Surg. 2005;  200 691-704
  • 33 Masuda K, Sah R L, Hejna M J, Thonar EJ-MA. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method.  J Orthop Res. 2003;  21 139-148
  • 34 Sage A, Chang A A, Schumacher B L, Sah R L, Watson D. Cartilage outgrowth in fibrin scaffolds.  Am J Rhinol Allergy. 2009;  23 486-491
  • 35 Watson D SA, Sage A, Chang A A, Schumacher B L, Sah R L. Growth of human septal chondrocytes in fibrin scaffolds.  Am J Rhinol Allergy. 2010;  24 e19-e22
  • 36 Vinatier C, Gauthier O, Masson M et al.. Nasal chondrocytes and fibrin sealant for cartilage tissue engineering.  J Biomed Mater Res A. 2009;  89 176-185
  • 37 Asawa Y, Ogasawara T, Takahashi T et al.. Aptitude of auricular and nasoseptal chondrocytes cultured under a monolayer or three-dimensional condition for cartilage tissue engineering.  Tissue Eng Part A. 2009;  15 1109-1118
  • 38 Masuda K, Pfister B E, Sah R L, Thonar EJ-MA. Osteogenic protein-1 promotes the formation of tissue-engineered cartilage using the alginate-recovered-chondrocyte method.  Osteoarthritis Cartilage. 2006;  14 384-391
  • 39 Vetter U, Zapf J, Henrichs I, Gammert C, Heinze E, Pirsig W. Human nasal septal cartilage: analysis of intracellular enzyme activities, glycogen content, cell density and clonal proliferation of septal chondrocytes of healthy adults and acromegalic patients.  Connect Tissue Res. 1989;  18 243-254
  • 40 Bujía J, Sittinger M, Wilmes E, Hammer C. Effect of growth factors on cell proliferation by human nasal septal chondrocytes cultured in monolayer.  Acta Otolaryngol. 1994;  114 539-543
  • 41 Dunham B P, Koch R J. Basic fibroblast growth factor and insulinlike growth factor I support the growth of human septal chondrocytes in a serum-free environment.  Arch Otolaryngol Head Neck Surg. 1998;  124 1325-1330
  • 42 Lavezzi A, Mantovani M, della Berta L G, Matturri L. Cell kinetics of human nasal septal chondrocytes in vitro: importance for cartilage grafting in otolaryngology.  J Otolaryngol. 2002;  31 366-370
  • 43 Richmon J D, Sage A B, Shelton E, Schumacher B L, Sah R L, Watson D. Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer.  Laryngoscope. 2005;  115 1553-1560
  • 44 Bujía J, Pitzke P, Kastenbauer E, Wilmes E, Hammer C. Effect of growth factors on matrix synthesis by human nasal chondrocytes cultured in monolayer and in agar.  Eur Arch Otorhinolaryngol. 1996;  253 336-340
  • 45 van Osch G J, Marijnissen W J, van der Veen S W, Verwoerd-Verhoef H L. The potency of culture-expanded nasal septum chondrocytes for tissue engineering of cartilage.  Am J Rhinol. 2001;  15 187-192
  • 46 Nadra R, Menuelle P, Chevallier S, Berdal A. Regulation by glucocorticoids of cell differentiation and insulin-like growth factor binding protein production in cultured fetal rat nasal chondrocytes.  J Cell Biochem. 2003;  88 911-922
  • 47 Hicks D L, Sage A B, Shelton E, Schumacher B L, Sah R L, Watson D. Effect of bone morphogenetic proteins 2 and 7 on septal chondrocytes in alginate.  Otolaryngol Head Neck Surg. 2007;  136 373-379
  • 48 Chua K H, Aminuddin B S, Fuzina N H, Ruszymah B H. Basic fibroblast growth factor with human serum supplementation: enhancement of human chondrocyte proliferation and promotion of cartilage regeneration.  Singapore Med J. 2007;  48 324-332
  • 49 Alexander T H, Sage A B, Schumacher B L, Sah R L, Watson D. Human serum for tissue engineering of human nasal septal cartilage. 2006 135: 397-403
  • 50 Alexander T H, Sage A B, Chen A C et al.. Insulin-like growth factor-1 and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage.  Tissue Eng Part C Methods. 2010;  , April 26 (IN Press)
  • 51 Concaro S, Gustavson F, Gatenholm P. Bioreactors for tissue engineering of cartilage.  Adv Biochem Eng Biotechnol. 2009;  112 125-43
  • 52 Pazzano D, Mercier K A, Moran J M et al.. Comparison of chondrogensis in static and perfused bioreactor culture.  Biotechnol Prog. 2000;  16 893-896
  • 53 Khan A A, Suits J M, Kandel R A, Waldman S D. The effect of continuous culture on the growth and structure of tissue-engineered cartilage.  Biotechnol Prog. 2009;  25 508-515
  • 54 Mauck R L, Seyhan S L, Ateshian G A, Hung C T. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels.  Ann Biomed Eng. 2002;  30 1046-1056
  • 55 Preiss-Bloom O, Mizrahi J, Elisseeff J, Seliktar D. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.  Artif Organs. 2009;  33 318-327
  • 56 Gorti G K, Lo J, Falsafi S et al.. Cartilage tissue engineering using cryogenic chondrocytes.  Arch Otolaryngol Head Neck Surg. 2003;  129 889-893
  • 57 Watson D. Tissue engineering for rhinoplasty.  Facial Plast Surg Clin North Am. 2009;  17 157-165, viii
  • 58 Rotter N, Aigner J, Naumann A, Hammer C, Sittinger M. Behavior of tissue-engineered human cartilage after transplantation into nude mice.  J Mater Sci Mater Med. 1999;  10 689-693
  • 59 Haisch A, Duda G N, Schroeder D et al.. The morphology and biomechanical characteristics of subcutaneously implanted tissue-engineered human septal cartilage.  Eur Arch Otorhinolaryngol. 2005;  262 993-997
  • 60 Farhadi J, Fulco I, Miot S et al.. Precultivation of engineered human nasal cartilage enhances the mechanical properties relevant for use in facial reconstructive surgery.  Ann Surg. 2006;  244 978-985; discussion 985
  • 61 Dobratz E J, Kim S W, Voglewede A, Park S S. Injectable cartilage: using alginate and human chondrocytes.  Arch Facial Plast Surg. 2009;  11 40-47
  • 62 Elisseeff J. Injectable cartilage tissue engineering.  Expert Opin Biol Ther. 2004;  4 1849-1859
  • 63 Sekiya I, Vuoristo J T, Larson B L, Prockop D J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis.  Proc Natl Acad Sci U S A. 2002;  99 4397-4402
  • 64 Zhang J, Liu L, Gao Z et al.. Novel approach to engineer implantable nasal alar cartilage employing marrow precursor cell sheet and biodegradable scaffold.  J Oral Maxillofac Surg. 2009;  67 257-264
  • 65 Mahmoudifar N, Doran P M. Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions.  Biomaterials. 2010;  31 3858-3867
  • 66 Kramer J, Hegert C, Guan K, Wobus A M, Müller P K, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4.  Mech Dev. 2000;  92 193-205
  • 67 Nussbaum J, Minami E, Laflamme M A et al.. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response.  FASEB J. 2007;  21 1345-1357
  • 68 Breitbach M, Bostani T, Roell W et al.. Potential risks of bone marrow cell transplantation into infarcted hearts.  Blood. 2007;  110 1362-1369

Deborah WatsonM.D. F.A.C.S. 

Division of Otolaryngology–Head and Neck Surgery

3350 La Jolla Village Drive, 112-C, University of California, San Diego, CA 92161

Email: debwatson@ucsd.edu

    >